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Abstract
The Southern Great Plains of the United States is a region with a sharp zonal precipitation gradient
that is prone to rapid transitions in precipitation extremes. Transitions from pluvial to drought
conditions can lead to the green-up of vegetation during extreme rainfall, posing a considerable
fire risk as the region rapidly transitions into drought. Such transitions have been studied in depth
across regions such as California; however, limited studies have examined their impacts across the
Southern Great Plains. The aim of this study was to examine the role of preceding precipitation
whiplash events in providing fuel for wildfires, with 2017–2018 investigated as a case study. This
study specifically demonstrates the relationship between precipitation, vegetation, and wildfires for
the first time across the Southern Great Plains. Lag correlation analysis of historical data at our
study site showed anomalously high precipitation 8 months prior to Spring wildfires, resulting in a
significantly higher number of wildfires and acres burned. In particular, this study examined a
highly impactful precipitation whiplash event that occurred during the Fall of 2017 across the
Oklahoma and Texas panhandles, which preceded a mega-fire event in the Spring of 2018.
Precipitation anomalies that were 137% of normal during the 2017 growing season rapidly
cascaded into drought conditions with precipitation anomalies 21% of normal throughout the cool
winter season. Excessive precipitation supported vigorous vegetation recovery and growth, with
vegetation indices peaking at approximately 1 standard deviation above average during August
2017. However, the subsequent drought period rapidly desiccated the terrestrial surface. As a result,
dozens of wildfires burned a total of 556 347 acres during March and April 2018, resulting in at
least two fatalities, dozens of homes destroyed, and over 500 personnel dispatched to fight and
mitigate the fires. Overall, this study highlights the significant role of preceding Fall precipitation
whiplash events in fueling Spring wildfires across the Southern Great Plains, particularly
exemplified by the impactful 2017–2018 case, highlighting the complex dynamics between extreme
precipitation, vegetation growth, and subsequent fire risks in the region.

1. Introduction

The SouthernGreat Plains (SGP) of theUnited States,
composed of Kansas, Oklahoma, and Texas, is a
region with a sharp zonal precipitation gradient that
can fluctuate on sub-seasonal to interannual scales
(Ruiz-Barradas and Nigam 2005, Yang et al 2007,
Christian et al 2015, Ryu and Hayhoe 2017, Flanagan

et al 2018, Seager et al 2018). This gradient makes
the region prone to rapid transitions in precipita-
tion extremes that produce weather whiplash events,
which can directly impact infrastructure, agriculture,
water quality, and water quantity (Dong et al 2011,
Christian et al 2015). A precipitation whiplash event
refers to when one precipitation extreme immediately
follows the opposite extreme with no break in the
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middle (Swain et al 2018), with associated impacts
that include flooding, flash drought, and wildfires
(Loecke et al 2017, Swain et al 2018, Verhoeven et al
2020, Ford et al 2021, Hernández Ayala et al 2021).
Under projected 21st-century climate change, pre-
cipitation variability is expected to increase, con-
tributing to increased vulnerability across the SGP
(Pendergrass et al 2017, Martin 2018, Swain et al
2018). As climate conditions continue to change, rare
events such as 100-year floods are likely to become
more common (Easterling et al 2017, Wehner et al
2017), and warmer temperatures are expected to
increase the fire risk in regions such as the SGP
(Dennison et al 2014, Balch et al 2017, Pyne 2017).
Therefore, it is critical to understand the impacts of
precipitation whiplash events across the SGP.

Periods of extreme rainfall can lead to increased
biomass across a region, which can then pose a con-
siderable fire risk if a region rapidly transitions into
drought due to the desiccation of the land surface
(Scasta et al 2016). The relationship between precip-
itation variability and wildfires has been highly stud-
ied across regions such as California (Dudney et al
2017,Hernández Ayala et al 2021); however, the influ-
ence of preceding precipitation anomalies on wild-
fire severity across the SGP is less well known. Fire
has always been part of the SGP landscape. Years ago,
Native American tribes held annual controlled burns
that would clear the underbrush and encourage new
plant growth (Pyne 1982, Engle et al 2008, Guyette
et al 2012, Twidwell et al 2013). However, state and
federal authorities have recently focused on quickly
extinguishing wildfires, and fire suppression has only
made the wildfire risk worse (Twidwell et al 2013,
Donovan et al 2017).Without regular burns, the land-
scape can grow thick with vegetation, especially dur-
ing pluvial periods, which can subsequently dry out
during drought, exacerbating wildfire conditions.

A mega-fire is defined as a wildfire exceeding
405 km2 or 100 000 acres, presenting complex chal-
lenges with broad societal consequences (Lindley et al
2019). A global increase in mega-fires has occurred
since the mid-1990s (Lindley et al 2019), straining
local response capacities and requiring substantial
firefighting resources. While U.S. scientific literature
and wildland fire policy have traditionally focused on
mega-fires that occur across the American West, the
SGP also faces significant threats. The SGP, character-
ized by a grass-dominated prairie, is climatically pre-
disposed to dry, windy conditions, which foster rapid
fire spread and contribute to some ofNorth America’s
largest wildfires (Lindsey and Lindley 2024). For
example, more than 1.4 million people in Oklahoma,
or 41%of the population, live in an area at an elevated
risk of wildfire (wildfirerisk.org 2022).

Weather and climate processes can act as import-
ant drivers of global fire events, playing a large
part in each stage of a wildfire (Verhoeven et al

2020, Hernández Ayala et al 2021). Lightning can be
an ignition source; temperature, air humidity, and
precipitation control fuel moisture and flammabil-
ity, and wind can exacerbate fire spread (Greenville
et al 2009, Moreira et al 2020). Hernández Ayala
et al (2021) showed that for California, precipita-
tion significantly influences vegetation growth pre-
ceding the wildfires and that the fires would burn
greater areas when the increased vegetation cover
had dried out. Additionally, Verhoeven et al (2020)
found that as the average precipitation increases, burn
scars from fires increase relatively in size due to the
new vegetation growth, which serves as a fire cata-
lyst. However, limited studies (Lindley et al 2014,
2019, Krueger et al 2016) have explicitly connected
precipitation, vegetation growth, and wildfires across
the SGP.

This study aimed to close this knowledge gap by
examining the role of preceding precipitation anom-
alies in providing fuel for wildfires across the SGP
and determining if higher-than-average precipitation
anomalies, followed by lower-than-average precipit-
ation anomalies in the year prior, lead to a higher-
than-average wildfire season across the SGP. It is
critical that we understand the relationship between
antecedent conditions and wildfires across the SGP,
as the results of our study could be used as a valu-
able tool for predicting the severity of the fire sea-
son across this region, especially for decision-makers
to potentially plan months in advance. To examine
vegetation growth and fuel availability in particular,
the Normalized Difference Vegetation Index (NDVI),
Enhanced Vegetation Index (EVI), and soil moisture
are used to quantify the effect of precipitation on
the land surface. In particular, this study examined
a critical precipitation whiplash event that occurred
during 2017 and 2018 across parts of the SGP,
which preceded a mega-fire event in the Spring of
2018.

2. Data andmethods

2.1. Atmospheric variables
Daily precipitation from 1981–2020 from the
Parameter-Elevation Regressions on Independent
Slopes Model (PRISM) dataset (PRISM Climate
Group, Oregon State University 2004) was utilized
in this study. The PRISM dataset is constructed
from 13 000 rain gauges across multiple sources,
which are then interpolated onto a 4 km grid using
a weighted regression scheme (Daly et al 2008). In
addition, east of the Rockies, PRISM data incor-
porates Next-Generation Radar (NEXRAD) ana-
lysis since 2002. Hourly 2m temperature data from
1981–2020 was obtained from the ERA5 reana-
lysis dataset (Copernicus Climate Change Service
(C3S), 2017) on a 0.25◦ grid and converted into daily
averages.
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2.2. Vegetation indices
Data from the Moderate Resolution Imaging
Spectroradiometer (MODIS) between 2003 and 2020
was utilized to quantify the effect of precipitation
on the land surface. MODIS vegetation indices are
produced at 16-day intervals and multiple spatial res-
olutions; this study used a pixel resolution of 0.05◦

(5 km). As MODIS sensors aboard Terra and Aqua
satellites are identical, the vegetation index algorithm
generates each 16-day composite eight days apart.

Both the NDVI and the EVI values were standard-
ized using a timeframe of 2003–2020. Additionally,
linear interpolation was used to fill in the missing
satellite data, and the Savitzky-Golay filter was used
to smooth the time series of NDVI and EVI (Chen
et al 2004, Christian et al 2022) to remove noise
while also preserving highermoments in the data (see
Savitzky and Golay 1964, Chen et al 2004). The NDVI
is a common and widely used remote sensing index
(Braun andHerold 2004) and is computed as the ratio
between the surface reflectance of the red band and a
near-infrared (NIR) band (equation (1)). The NDVI
of a densely vegetated area will tend toward posit-
ive values, whereas lower NDVI values can indicate
moisture-stressed vegetation. Sites not highly veget-
ated, such as water and urban regions, are represented
by near zero or negative values,

NDVI=
ρNIR − ρRED
ρNIR + ρRED

. (1)

The EVI was developed to improve the NDVI to
optimize the vegetation signal with improved sensit-
ivity to biomass, atmospheric background, and soil
conditions. The EVI decouples the canopy back-
ground signal and reduces atmospheric influences
(Gao et al 2000, Wardlow and Egbert 2010) using
adjustment factors seen in equation (2):

EVI= G
ρNIR − ρRED

L+ ρNIR +C1ρRED −C2ρBLUE
. (2)

Here ρBLUE is the surface reflectance at the blue
band;C1 andC2 are the coefficients of the aerosol res-
istance term; L is the canopy background adjustment
factor; and G is the gain factor.

The NDVI and EVI are both commonly used
in remote sensing to assess the health and vigor of
vegetation. However, they each have limitations, and
weather conditions, such as clouds and aerosols, can
impact the accuracy of satellite-based data acquis-
ition. The iterative process, applying the Salvitzky-
Golay filter many times as shown in Chen et al (2004)
and applied to the NDVI and EVI time series in
this study, reduces the noise caused by cloud con-
tamination and atmospheric variability, which res-
ults in a higher quality time series of NDVI and EVI.
Additionally, it is beneficial to use both the NDVI
and EVI as they complement each other and can help
improve the reliability of the results.

2.3. OklahomaMesonet
Four Oklahoma Mesonet sites (Cheyenne, El Reno,
Shawnee, andWebbers Falls) which span west-to-east
across Oklahoma, were chosen to examine the soil
moisture response to changes in the atmospheric con-
ditions (McPherson et al 2007). These four sites were
chosen as they span the gradient of drought intensit-
ies that developed during the 2017–2018 precipitation
whiplash event, therefore allowing for a comparison
of the soil moisture response.

The Oklahoma Mesonet measures the calibrated
change in temperature (∆Tref) of the soil over time
after a heat pulse is introduced, which can be used to
calculate several hydrological variables. In particular,
to examine the soil moisture response, the fractional
water index (FWI) was calculated at three different
levels; 5, 25, and 60 cm below the natural sod cover
(Schneider et al 2003, Illston et al 2008). The FWI is a
unitless value that ranges from 0.00 for very dry soils
to 1.00 for soils at full capacity and is computed using
equation (3):

FWI=
∆Td −∆Tref

∆Td −∆Tw
(3)

where FWI = fractional water index (unitless), ∆Td

= 3.96 ◦C, ∆Tw = 1.38 ◦C, and ∆Tref = reference
temperature difference. Although the FWI does not
directly identify the soil water content, themagnitude
of the heat dissipation varies as a function of the
amount of water surrounding the sensor, therefore,
the soil moisture content can be inferred by measur-
ing the temperature change after a heat pulse is intro-
duced. Additionally, unlike other metrics, the nor-
malized values do not depend on soil type, texture,
and/or wetness, allowing for comparison across the
different sites. Daily rainfall totals at each Mesonet
site, which are measured in a 24 h period starting at
0000 UTC (6 PM CST or 7 PM CDT) just above the
ground, were also analyzed.

2.4. Wildfire data
Wildfire data was acquired from the Monitoring
Trends in Burn Severity (MTBS) program; an inter-
agency program whose goal is to consistently map
the burn severity and extent of large fires across all
lands of the United States from 1984 to the present
(Picotte et al 2020). Fires are considered to be large if
they burn 1000 acres or more in the western United
States and 500 acres or more in the eastern United
States. The east/west boundary defined by MTBS fol-
lows state boundaries running along the eastern bor-
der of North Dakota south to the eastern border of
Texas. Using this definition, the study region is con-
sidered to be in the western United States for the pur-
pose of size thresholding. For this study, the number
of acres burned and the ignition date were gathered
for all fires designated as wildfires between 1984 and
2020.
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2.5. Methodology
This study examined the role of a preceding precip-
itation whiplash event in providing fuel for wildfires
across the SGP. Specifically, our study domain for
analysis was a region bounded by a north and south
latitude of 34◦N and 38◦N, respectively, and a west
and east longitude of −104◦W and −98◦W, respect-
ively. The months of March and April were chosen
as our wildfire season since, although wildfires can
occur year-round, March–April has been shown to
be the peak of the SGP wildfire season (Lindley et al
2019); 170 total large wildfires, as defined by MTBS,
occurred across the study domain during March and
April between 1991 and 2020 (figure not shown).

Anomalies for both the precipitation data from
PRISM and the temperature data from ERA5 were
created by removing the 1981–2010 daily climato-
logical mean and linearly detrending. Additionally,
section 3.1 used Spearman’s rank correlation to find
the lag correlation coefficient between precipitation,
temperature, vegetation, and the number of wildfires
and number of acres burned by wildfires. Spearman’s
rank was chosen over other correlation methods as
it is a non-parametric measure of rank correlation,
which does not require the distributions to be nor-
mally distributed. Finally, the significance of each lag
correlation coefficient was found to the 95% level
using a Monte Carlo test.

3. Results

3.1. Climatological relationship
The average monthly anomalous values of precipit-
ation, temperature, NDVI, and EVI were examined
prior to the March/April wildfire season to under-
stand the relationship between antecedent atmo-
spheric conditions, vegetation growth, and wildfires.
Through lag correlation analysis, a significant correl-
ation of 0.53 was found between precipitation in the
August prior and the number of wildfires as well as
the number of acres burned in April (figures 1(a) and
(d)). A significant negative correlation of −0.27 was
found between the prior February precipitation and
the number of acres burned in April. The maximum
negative correlation between the number of wildfires
and the prior February precipitation was also found;
however, this value was not significant.

Similarly, the NDVI and the number of wildfires
and acres burned in April also showed significant
positive correlations between January and May (11–
15 months prior) with average positive correlations
of 0.58 and 0.56, respectively (figures 1(c) and (f)).
Although the values are non-significant, a maximum
negative correlation of −0.17 and −0.22 between
NDVI and April wildfires can also be seen in the pre-
vious December (figures 1(c) and (f)). Unlike pre-
cipitation and NDVI, temperature anomalies do not
correlate significantly with the number of wildfires

and acres burned in April. Similar results are seen for
March wildfires, with the maximum positive correla-
tion between precipitation and the wildfire variables
occurring eight months prior in July and between
NDVI and the wildfire variables in the Spring prior.

A rapid wet-to-dry transition in the lag correla-
tions can also be observed between the summer and
fall prior to Spring wildfires. Before September, all the
correlations between precipitation, vegetation, and
the wildfire variables were positive, suggesting that
more precipitation and greener vegetation conditions
lead to a more active wildfire season the following
spring. However, from September onwards, the cor-
relations all become negative, suggesting that a rapid
transition from wet to dry, in August and September
specifically, could be a factor in creating a more active
spring wildfire season the following year. To examine
the relationship between rapid wet-to-dry transitions
and wildfires across the SGP in detail, we examine
a critical precipitation whiplash event that occurred
during 2017 and 2018 across our study domain.

3.2. Case study 2017–2018
The relationship between rapid wet-to-dry precip-
itation whiplash events and how they relate to the
intensity of the wildfire season across the SGP was
examined for the 2017–2018 period. By analyzing the
relationship between precipitation, vegetation, and
wildfires from a case-study perspective, we anticip-
ate a deeper understanding of the preceding con-
ditions conducive to a more active wildfire season
across the SGP. Across our study domain, annual
precipitation totals for 2017 and 2018 were 22.5%
and 10.3% above normal compared to the 1981–
2010 climatological average, with annual accumu-
lated precipitation values of 702.7mmand 632.6mm,
respectively. Despite both years being above average
in annual accumulated precipitation, there was a six-
month period between 3 October 2017 and 24 April
2018, where precipitation was extremely limited with
below-normal precipitation anomalies, which resul-
ted in this region rapidly transitioning into drought
conditions.

A rapid transition from above-average precipita-
tion conditions to below-average precipitation condi-
tions was observed at the beginning of October 2017,
resulting in the definition of two periods for analysis:
Period 1 - enhanced precipitation (1st Jun—7th Oct
2017) and Period 2 - reduced precipitation (8th Oct
2017–24th Apr 2018). At the beginning of October
2017, 76.5% of the SGP was considered not to be in
drought conditions, with 17.7% of the region classi-
fied as abnormally dry (D0) and 5.8% of the region
classified as moderate drought (D1) conditions (U.S.
Drought Monitor 2018). However, by 24 April 2018,
all ranges of drought defined by the U.S. Drought
Monitor were observed across the SGP, with 71.1%
of the region in D0–D4 drought; of that, 13.2% and
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Figure 1. The lag correlation coefficient between the number of April wildfires and (a) precipitation anomalies, (b) temperature
anomalies, (c) NDVI anomalies and the number of acres burned by April wildfires and (d) precipitation anomalies, (e)
temperature anomalies, (f) NDVI anomalies. All values are domain-averaged across the study domain, as shown in figure 3. The
green and brown dashed lines show the maximum and minimum correlation coefficients, respectively, and the black stars show
correlations that are significant to the 95% level, calculated using Monte Carlo.

7.2% of the region were classified as extreme (D3)
and exceptional (D4) drought respectively. This rapid
development from non-drought to exceptional (D4)
drought conditions was observed across the study
domain and caused significant harm to Oklahoma’s
wheat and cattle industry throughout the winter.

In 2018, the March–April period yielded 23 wild-
fires that burned a total of 556 347 acres, compared
to the average of 5.66 wildfires that burn approxim-
ately 120 500 acres (figure 2(c)). This is a four-fold
increase in the number of wildfires and 4.6 times the
number of acres burned compared to usual. Over
the 5 day period between 12 April 2018 and 17 April
2018, 12 individual wildfires ignited across the study
domain, burning 460 244 total acres, which is a sig-
nificant component of the total acres burned during
the months of March and April. The Rhea Fire was
by far the largest, beginning at approximately 1730
UTCon 12April 2018, inDeweyCounty, which lies in
NWOklahoma. The fire burned a total of 277 949.00
acres with at least two fatalities, dozens of homes des-
troyed, and over 500 personnel dispatched to fight
and mitigate the fire. The Rhea Fire was nearly fully
contained by 24 April 2018, which coincided with the
start of the rainfall that relieved the 6month period
of drought conditions across the region (figure 2(a)).
Enhanced seasonal wildfire activity has also been
linked to the cold phase (La Niña) of the El Niño

Southern Oscillation, especially when preceded by
anomalously high precipitation anomalies during the
growing season (Lindley et al 2014). According to the
Climate Prediction Center, the winter of 2017–2018
had Oceanic Niño Index values ranging from −0.5
to −1.0, signifying that a weak La Niña event was
unfolding, which was preceded by excessive precipit-
ation anomalies (Climate Prediction Center 2001).

3.2.1. Precipitation and vegetation
The growing season (April–October) of 2017 was
anomalously wet across the study domain, with pre-
cipitation anomalies 137% of normal during Period
1 (figure 2(a)). During this period, the study domain
received 386mm of rainfall, compared to a climato-
logical average of 281mm. Temperatures also began
above average, creating warm and wet conditions
throughout the growing season. Spatially, through-
out Period 1, the largest area of positive anom-
alies occurred across southeastern Texas (figure 3(a)),
which were a result of Hurricane Harvey, whichmade
landfall along the Texas coast on 25th August 2017,
as a Category 4 storm (Van Oldenborgh et al 2017,
Brauer et al 2020).

Excessive precipitation during the late grow-
ing season of 2017 supported vigorous vegetation
recovery and growth. Across the study domain,
vegetation conditions (NDVI and EVI) were at 1.5
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Figure 2. (a) Time series of precipitation (blue) and temperature (red) anomalies and cumulative precipitation totals (purple);
(b) NDVI (green) and EVI (brown) standardized anomalies; and (c) the number of wildfires (blue) plus the number of acres
burned by wildfires (pink) per month for the study domain. All values are domain-averaged across the study domain, as shown in
figure 3. The black dashed lines signify the different periods for analysis: Period 1 (1st June—7th October 2017) and Period 2 (8th
October 2017–24th April 2018).

standard deviations below average at the end of
June 2017 (figure 2(b)). However, positive precipit-
ation anomalies throughout the summer, on average
0.82mmd−1 during Period 1, led to the green-up and
recovery of vegetation shown by positively anomal-
ous values of NDVI and EVI, approximately 1 stand-
ard deviation above average, at the end of the grow-
ing season (figures 4(a) and (b)). When compared
to the rest of the SGP, the largest positive anomalous
NDVI values were observed across our study domain
(figures 4(c) and (d)).

At the beginning of October 2017, precipitation
abruptly stopped and began a period of drought
that lasted throughout the region’s cool season due
to precipitation anomalies that were 21% of nor-
mal (figure 2(a)). Between 7 October 2017, and
20 April 2018 (Period 2), the domain received
40 mm of rainfall, compared to a climatological
average of 189 mm. Precipitation anomalies rapidly
transitioned from 6.6mmd−1 above normal at the
end of September to 1.9mm d−1 below normal at
the beginning of October and remained below nor-
mal until Spring 2018. When comparing precipita-
tion anomalies within the study domain to the rest
of the SGP, it can be seen that most of the region
experienced, on average, below-normal precipitation
anomalies of approximately 1mm d−1 throughout
Period 2 (figure 3(b)).However, positive precipitation
anomalies of the same magnitude can be seen across
the eastern portion of the SGP.

Temperature anomalies throughout Period 2
hovered near zero, creating a dry and relatively cool
end of the year in contrast to the warm and wet con-
ditions that dominated the start of 2017. According
to climatology (see section 3.1), temperature anom-
alies do not correlate significantly with the num-
ber of wildfires and acres burned in April (figure 1).
Therefore, the deficits in precipitation throughout the
cool winter season were likely the primary driver of
the wildfires that occurred during Spring 2018 due to
the near-average temperatures.

The vegetation and land surface yielded a
lagged response to these rapid precipitation changes
(figure 2(b)), with NDVI and EVI values remain-
ing above average at the end of 2017, with a slow
decrease throughout the end of 2017 into 2018.
Vegetation in drought-prone areas, such as the
SGP, has a slight resistance to changes in precip-
itation, where resistance’ expresses the ability of
vegetation to withstand environmental disturb-
ances (Tilman 1996, De Keersmaecker et al 2015).
Thus, this decrease in NDVI and EVI standardized
anomalies begins gradually before rapidly decreas-
ing during April to 1.2 standard deviations below
average over a 40-day period. Spatial standardized
anomalies of NDVI on 15 April and 23 April show
negative NDVI anomalies of approximately one
standard deviation across the entirety of Oklahoma
stretching into the Texas panhandle (figures 4(c)
and (d)).
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Figure 3. Average spatial precipitation anomalies in mm per day across the SGP for Period 1 (left) and Period 2 (right) where each
period is shown by figure 2. Outlined by the black box is the domain for the study. Black stars represent the location of the four
Oklahoma Mesonet sites from west to east; Cheyenne, El Reno, Shawnee, and Webbers Falls.

Overall, 2017 saw an enhanced wet summer with
two anomalously high peaks in precipitation dur-
ing August and September before rapidly transition-
ing to a drought period fueled by below-average
precipitation anomalies throughout the winter and
spring of 2018. These results match what is expec-
ted based on the typical departures from climatology
for enhanced Spring wildfire activity (see section 3.1)
with below-average precipitation anomalies through-
out the late fall and winter and vegetation condi-
tions that were greener-than-usual throughout the
late summer, winter, and spring before rapidly trans-
itioning to below-average vegetation health through-
out March and April.

3.2.2. Soil moisture conditions
Soil moisture throughout the late growing season
of 2017 and early 2018 was analyzed to evaluate
the land surface response to changes in precipitation
(figure 5). A transect was created using Oklahoma
Mesonet stations from west to east approximately
along 35.5◦N. During Period 2, a rapid decrease in
FWI at the Cheyenne site was observed, correspond-
ingwith a transition fromnon-drought conditions on
3 October 2017, to exceptional (D4) drought condi-
tions on 24 April 2018 (U.S. Drought Monitor 2018).

At the 5 cm level, FWI decreased from 0.9 to 0.1 over
the course of 1 month from October to November,
and by early December, had reached a value of 0
(figure 5). In addition, FWI at the 25 and 60 cm levels
decreased to values of 0.25 and 0.2 by the end of the
period.

At the second site, El Reno, which is further east
of Cheyenne, a similar decrease in FWI occurred
throughout Period 2, corresponding with a sim-
ilar transition from non-drought conditions on 3
October 2017, to severe (D2) drought conditions
on 24 April 2018 (U.S. Drought Monitor 2018).
However, compared to Cheyenne, the drying trend
in FWI at all three levels decreased slower, reaching
values of 0.2 (5 cm), 0.5 (25 cm), and 0.7 (60 cm) by
the end of the period. By comparison, the two east-
ern sites along the transect, Shawnee and Webbers
Falls, that did not experience a precipitation whip-
lash event and were not in drought conditions on
24 April 2018, had different soil moisture profiles
throughout Period 2 (figure 5). For example, FWI
at both sites and all three levels remained greater
than 0.5.

Overall, the transect highlighting soil moisture
conditions across the drought gradient confirms that
soils became desiccated through the root zone within
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Figure 4. Spatial NDVI standardized anomalies at the end of Period 1 on (a) the 30th September 2017 and (b) 8th October 2017
and at the end of Period 2 on (c) the 15th April 2018 and (d) 23rd April 2018 where each period is shown by figure 2. Outlined by
the black box is the study domain. Black stars represent the location of the four Oklahoma Mesonet sites from west to east:
Cheyenne, El Reno, Shawnee, and Webbers Falls.

the drought-affected areas (U.S. Drought Monitor
2018). Further, the decreasing soil moisture condi-
tions corresponded with the significant deterioration

of vegetation conditions shown in figures 4(c) and
(d), and likely provided fuel for the wildfires during
Spring 2018.
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Figure 5. Daily rainfall totals (blue) and Fractional Water Index (FWI) for three levels; 5 cm (green), 25 cm (purple), and 60 cm
(brown), for 4 Oklahoma Mesonet sites throughout 2017 and 2018.

4. Discussion

Wicked problems, such as cascading events, have
wicked impacts. This study aimed to examine the
role of preceding precipitation anomalies in provid-
ing fuel for wildfires across the SGP. Through lag cor-
relation analysis of historical data at our study site,
anonymously high precipitation 8 months prior was
shown to result in a significantly higher number of
wildfires and acres burned in the following spring.
Additionally, a rapid wet-to-dry transition in the
lag correlations was also observed between the sum-
mer and fall prior to Spring wildfires. Therefore, we
examined a highly impactful precipitation whiplash
event that occurred during the Fall of 2017 across the
Oklahoma and Texas panhandles. Prior to the whip-
lash event, precipitation anomalies were 137%of nor-
mal throughout the growing seasonof 2017.However,
a dramatic and abrupt transition occurred that led to
the region rapidly cascading into drought conditions.
This included precipitation anomalies 21% of nor-
mal throughout the cool winter season and drought
designations that reached exceptional (D4) drought
intensity. This whiplash event was followed by an
above-average wildfire season during Spring 2018,
demonstrating how preceding precipitation anom-
alies, specifically whiplash events, are crucial for an
active spring wildfire season and could be used for fire
prediction months in advance.

Further, this study showcases the vegetation con-
ditions that are conducive to a more active wild-
fire season across the SGP. Climatologically, across
our study site, above-average vegetation conditions in

the prior spring are significantly correlated with an
above-average spring wildfire season one year later.
Our climatological results also suggest that reduced
vegetation conditions during the winter prior are
important for an active spring wildfire season. This
was demonstrated during 2017 and 2018; excessive
precipitation during the late growing season of 2017
supported vigorous vegetation recovery and growth.
Vegetation indices (NDVI andEVI) peaked at approx-
imately 1 standard deviation above the long-term
mean in late August/early September. The subsequent
rapid transition into drought conditions led to the
desiccation of the terrestrial surface, drying through-
out the soil column, and culminatedwith a significant
decline in vegetation conditions over a 40-day period
during March and April 2018. As a result, ample fuel
was produced that supported an above-average wild-
fire seasonwith severalmega-fires that yielded extens-
ive destruction to natural and human environments
during April 2018.

Overall, our results imply that the conditions con-
ducive to amore activeApril wildfire season are linked
to elevated prior spring vegetation conditions fol-
lowed by an anomalously wet summer and an anom-
alously drywinter coincidingwith reduced vegetation
conditions. These results also match those found by
(Hernández Ayala et al 2021) in California, where 11
of the 20 wildfire seasons studied were found to be
preceded by above-average levels of precipitation and
vegetation growth.

However, our study does not comewithout uncer-
tainties. Only large fires, as defined by theMTBS pro-
gram (see section 2.4), were examined in this study,
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and a large fire did not occur in approximately 1/3
of all March and April months examined throughout
our time period, resulting in a heavily skewed gamma
distribution. The relationship between antecedent
precipitation and vegetation conditions should be
examined for all wildfires; however, data on smaller
wildfires is harder to obtain, and smaller wildfires are
often not reported. Additionally, we used satellite data
within our study to examine the vegetation condi-
tions across our domain, where satellite data can be
impacted by weather conditions such as clouds and
aerosols. Finally, we examine antecedent precipita-
tion and vegetation conditions in our entire domain
rather than the specific conditions at the wildfire loc-
ations within our domain, as was done by Hernández
Ayala et al (2021) in California. Although this is more
representative of the entire area, and we are examin-
ing large fires within this domain, nuances across the
domain and any differences between the locations
where wildfires occurred and did not occur would
have been missed.

Finally, many studies have shown an increase in
precipitation variability on the daily to sub-seasonal
to interannual and decadal timescales into themiddle
and late twenty-first century (Weaver et al 2016,
Pendergrass et al 2017, Flanagan et al 2018, Martin
2018, Swain et al 2018, Marvel et al 2021). As pre-
cipitation variability increases, the time between pre-
cipitation extremes is expected to decrease, resulting
in more rapid transitions (whiplash events) (Martin
2018, Ford et al 2021). At the same time, grass-
lands recover quickly from environmental disturb-
ances. Wildfires help to restore nutrients in the soil,
which can lead to explosive growth in the vegeta-
tion biomass during a period of extensive precipit-
ation (Wester et al 2014, Steiner et al 2020, Parker
et al 2022). Conversely, the vegetation biomass can
become quickly desiccated during periods of drought
and/or elevated temperatures, which are also expec-
ted to increase in the future climate (Otkin et al 2016,
Christian et al 2020). We showed preceding precipit-
ation whiplash events are a crucial factor that could
lead to a more active spring wildfire season across
the SGP. Therefore, the combination of an increase in
precipitation whiplash events and the quick recovery
and desiccation of the environment across the SGP,
enhances the risk of precipitation whiplash events
cascading into conditions that support mega-fires at
a much higher frequency in the future.

5. Conclusion

Overall, this study demonstrates that higher-than-
average spring vegetation, a wet summer, followed
by a dry winter and spring with desiccated vegeta-
tion conditions, is a pattern that is more likely to
lead to a higher number of wildfires and acres burned
in the following spring across the SGP. Precipitation

variability, excessive vegetation growth, and their
relationship to wildfires have been studied extens-
ively across regions such as California and Australia
(Verhoeven et al 2020, Hernández Ayala et al 2021).
However, in this study, we comprehensively show that
this relationship is also important for grassland wild-
fires across the SGP. Further, previous studies have
shown that enhanced seasonal wildfire activity has
been linked to the cold phase (La Niña) of the El
Niño Southern Oscillation, especially when preceded
by anomalously high precipitation anomalies during
the growing season (Lindley et al 2014). Thus, the
relationship between La Niña, precipitation, temper-
ature, vegetation, and spring wildfires illustrates that
antecedent conditions could be a valuable tool for
predicting the severity of the fire season across this
region.
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