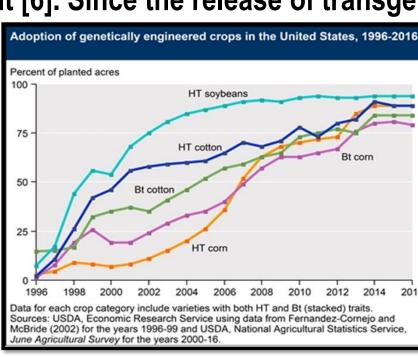


Corn Hybrid and Bt Transgene Performance in Yield and Protection from Pre-harvest Losses Caused by Lepidopteran Feeding

Luke Pruter¹, Michael Brewer¹, Mac Young¹, Julio Bernal ²

INTRODUCTION

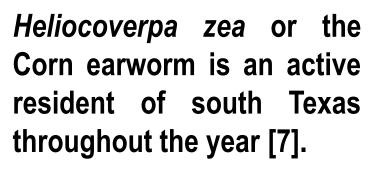


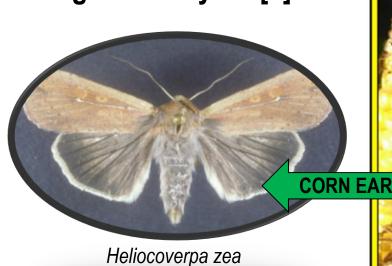
One of the most common problems facing Texas corn farmers is the injury brought on by corn feeding lepidopteran pests [1]. The fall armyworm and corn earworm are continuous residents of Texas that are known to reduce health and value of corn [2, 3]. Insect injury can reduce yield although the relationship is variable across hybrids [4]. Advancing technologies in the farming industry have offered a solution to this problem that doesn't involve increasing pesticide use. Corn growers have the option to combat insect injury on their corn with the use of genetically modified seed,

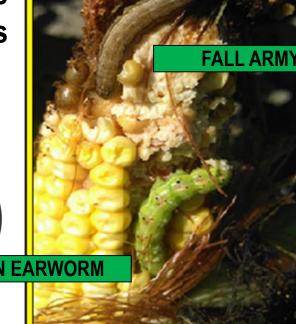
however there is added cost to the seed. This poster compares the effects of hybrid background and their commercial Bt transgenes in their ability to reduce pre-harvest losses due to insect feeding.

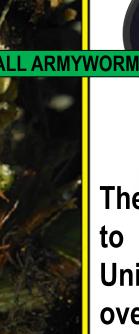
BACILLUS THURINGIENSIS OR Bt

Bacillus thuringiensis (or Bt) is a bacterium commonly used as a biological pesticide. When Bt toxin is ingested by a lepidopterous insect it begins to crystalize in the gut, and destroys the digestive tract of the caterpillar feeding on it [6]. Since the release of transgenic *Bt* maize in 1996, many different types


of Bt traits have been developed for sale. Bt corn has become increasingly popular over the last 15 years and has grew from about 8 percent of U.S. corn acreage in 1997, to 79 percent in 2016 [8]. There is a wide range of Lepidoptera control in corn with commercially available *Bt* transgenes [5]. This poster reviews the effectiveness of several Bt transgenes and hybrid


families in their ability to reduce insect feeding, and preserve yield.

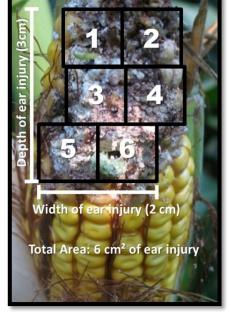

TARGET PESTS


CORN EARWORM

FALL ARMYWORM

most regions of Texas [6]

OBJECTIVES


Objective 1: Evaluate yield and ear injury caused by insects of selected commercial hybrid families with and without *Bt* transgenes.

Objective 2: Evaluate the relative contribution of the hybrid families and the Bt transgenes in yield protection and ear injury.

Objective 3: Review financial indicators and compare hybrid family performance based on cumulative 10-year cash flow/per acre predictions including input costs.

METHODOLOGY

Random split block design trials were planted in Corpus Christi April 1, 2016. Plots were composed of 4 rows (38 in. x 20 ft.) April 1, 2016. Plots were composed of 4 rows (38 in. x 20 ft.) There were 14 plots per rep. with a total of 5 reps. Ear injury 📳 🌌 🧱 🔀 measurements included total area of insect feeding injury (cm²), 📳 and the deepest point of insect injury measuring from the tip of the ear (cm). Yield measurements included harvest weight (lbs/bushel) and (moisture %) and were used to calculate the yield adjusted to (bushels/acre) used in objectives 1, 2, & 3.

Bt Transgene Protection/Abbreviation Guide

Bt Transgene Trade Name	Transgene Abbreviation	Corn Earworm Protection	Fall Armyworm Protection
No Bt Transgene	RR/RR2	No	No
Genuity® Smart Stax™	SS	Yes	Yes
Genuity®DroughtGard™	DG	No	No
Genuity® VT Double Pro™	VT2P	Yes	Yes
Genuity® VT Triple Pro™	VT3P	Yes	Yes
YieldGard™ + Herculex™	YHR	Yes	Yes
Agrisure® Viptera 3111™	V	Yes	Yes

OBJECTIVE 1: HYBRID FAMILY 1

1 20 1	HYB	RID 1 G	ENETICS +	SS	
- 53 - - 54 -			HYBRIC	FAMILY 1	
- 12 - 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1		YIELD STATIS	TICS	INSECT D	AMAGE
. 7 • • 10		Ear circumference (cm)	14.82 ± 0.25	Bt proteins expressed	Cry1A.105, Cry2Ab2Cry1F, Cry3Bb1, Cry34Ab1/Cry35Ab1
		Ear length (cm)	19.52 ± 0.34	Area of ear injury cm ²	3.14 ± 0.88
,		Bushels per acre	106.67 ± 9.01	Depth of ear injury cm	2.78 ± 0.59
24	428-11-681-11-11-1				

HYBRI	D
YIELD STATI	STIC
Ear circumference (cm)	1
Ear length (cm)	1
Bushels per acre	10

HYBRID 1 GENETICS + DGVT2P						
	HYBRID FAMILY 1					
YIELD STATISTICS INSECT DAMAGE						
Ear circumference (cm)	14.44 ± 0.04	Bt proteins expressed	Cry1A.105, Cry2Ab2			
Ear length (cm)	19.44 ± 0.34	Area of ear injury cm ²	2.96 ± 0.83			
Bushels per acre 107.33 ± 6.14 Depth of ear injury cm 2.68 ± 0.50						

OBJECTIVE 1: HYBRID FAMILY 2

	HYBRID 2 GENETICS + VT2P				
	HYBRID FAMILY 2				
	YIELD STATISTICS		INSECT DAMAGE		
	Ear circumference (cm)	15.3 ± 0.17	Bt proteins expressed Cry1A.105,		
	Ear length (cm)	20.12 ± 0.14	Area of ear injury cm ²	1.98 ± 0.58	
30	Bushels per acre	138.29 ± 3.28	Depth of ear injury cm	2.1 ± 0.82	

	HYBRID 2	2 GENET	TCS + NO B	t (RR2)
		HYBRIC	FAMILY 2	
	YIELD STATIS	TICS	INSECT DAMAGE	
	Ear circumference (cm)	15.26 ± 0.19	Bt proteins expressed No Bt pro	
	Ear length (cm)	19.92 ± 0.25	Area of ear injury cm ²	3.9 ± 0.37
28 29 30	Bushels per acre	135.71 ± 3.47	Depth of ear injury cm	2.86 ± 0.32

OBJECTIVE 1: HYBRID FAMILY 3

HYBRID 3 GENETICS + VT3P					
	HYBRI	D FAMILY 3			
YIELD STATIS	YIELD STATISTICS INSECT DAMAGE				
Ear circumference (cm)	14.4 ± 0.15	Bt proteins expressed	Cry1A.105, Cry2Ab2, Cry3Bb1		
Ear length (cm)	19.08 ± 0.33	Area of ear injury cm ²	1.76 ± 0.36		
Bushels per acre	119.69 ± 3.43	Depth of ear injury cm	1.30 ± 0.18		

A	HYBRID 3 GENETICS + NO Bt (RR2)					
	HYBRID FAMILY 3					
	YIELD STATISTICS		INSECT DAMAGE			
	Ear circumference (cm)	14.68 ± 0.15	Bt proteins expressed	No <i>Bt</i> proteins		
	Ear length (cm)	18.72 ± 0.30	Area of ear injury cm ²	4.00 ± 0.64		
	Bushels per acre	115.91 ± 4.26	Depth of ear injury cm	2.94 ± 0.52		

OBJECTIVE 1: HYBRID FAMILY 4

HYBRID 4 GENETICS + NO Bt (RR)					
	HYBRID FAMILY 4				
YIELD STATISTICS INSECT DAMAGE					
Ear circumference (cm)	14.36 ± 0.10	Bt proteins expressed	No Bt proteins		
Ear length (cm)	19.64 ± 0.46	Area of ear injury cm ²	6.12 ± 0.68		
Bushels per acre	101.16 ± 3.89	Depth of ear injury cm	3.64 ± 0.36		

HYBRID 4 GENETICS + VYHR YIELD STATISTICS

YIELD STATISTICS		INSECT DAMAGE			
Ear circumference (cm)	13.84 ± 0.14	Bt proteins expressed	Vip3Aa20		
Ear length (cm)	20.34 ± 0.35	Area of ear injury cm ²	0.15 ± 0.12		
Bushels per acre	97.29 ± 5.25	Depth of ear injury cm	0.10 ± 0.08		
HYBRID 4 GENETICS + YHR					
HYBRID FAMILY 4					
YIELD STATIS	TICS	INSECT DAMAGE			

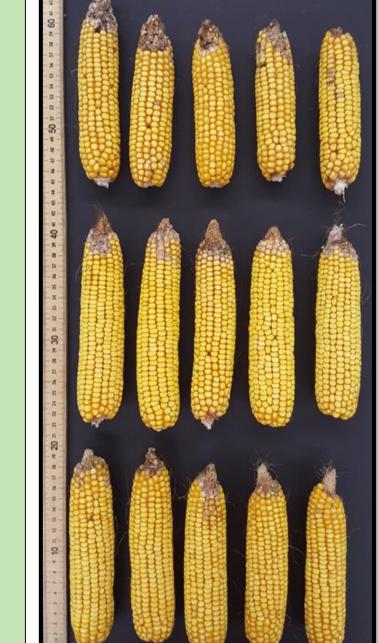
Depth of ear injury cm

OBJECTIVE 1: HYBRID FAMILY 5

112.47 ± 4.5

Ear length (cm)

Bushels per acre


	HYBRID 5 GENETICS + VT2P					
	HYBRID FAMILY 5					
	YIELD STATISTICS INSECT I		INSECT DA	AMAGE		
	Ear circumference (cm)	14.27 ± 0.10	Bt proteins expressed	Cry1A.105, Cry2Ab2		
	Ear length (cm)	21.13 ± 0.29	Area of ear injury cm ²	3.1 ± 0.36		
25 26	Bushels per acre	109.34 ± 4.48	Depth of ear injury cm	2.28 ± 0.13		

OBJECTIVE 1: HYBRID FAMILY 5 CONTINUED

à	HYBRID 5 GENETICS + VT3P					
	HYBRID FAMILY 5					
	YIELD STATISTICS		INSECT DAMAGE			
	Ear circumference (cm)	14.06 ± 0.24	Bt proteins expressed	Cry1A.105, Cry2Ab2, Cry3Bb1		
	Ear length (cm)	20.2 ± 0.35	Area of ear injury cm ²	3.48 ± 1.19		
28 29 30	Bushels per acre	112.01 ± 3.01	Depth of ear injury cm	2.58 ± 0.83		

OBJECTIVE 1: HYBRID FAMILY 6

HYBRID FAMILY 6										
YIELD STATIS	STICS	INSECT DAMAGE								
Ear circumference (cm)	14.2 ± 0.13	Bt proteins expressed	No Bt proteins							
Ear length (cm)	18.66 ± 0.3	Area of ear injury cm ²	6.72 ± 0.55							
Bushels per acre	81.78 ± 9.73	Depth of ear injury cm	3.76 ± 0.25							
HYBRID 6 GENETICS + VT3P HYBRID FAMILY 6										
YIELD STATISTICS INSECT DAMAGE										
Ear circumference (cm) 14.4± 0.21 Bt proteins expressed Cry1A.105, Cry2Ab Cry3Bb1										
Ear length (cm)	18.78 ± 0.45	Area of ear injury cm ²	5.26 ± 0.65							
Bushels per acre	101.86 ± 8.78	Depth of ear injury cm	2.92 ± 0.23							
111/10										

HYBRID 6 GENETICS + NO Bt (RR)

HYBRID 6 GENETICS + SS								
	HYBRIC	FAMILY 6						
YIELD STATIS	INSECT D	INSECT DAMAGE						
Ear circumference (cm)	14.12 ± 0.52	Bt proteins expressed Cry1A.105, Cry2Ab2 Cry3Bb1, Cry34Ab1/Cry35						
Ear length (cm)	18.04 ± 0.74	Area of ear injury cm ²	2.76 ± 0.23					
Bushels per acre	104.07 ± 3.68	Depth of ear injury cm	2.12 ± 0.22					

OBJECTIVE 2: INSECT DAMAGE RESULTS

Hyb Fam	rid <i>Bt</i> ily Transgene	Means Separation	Mean Ear Injury (cm²)	Standard Error	Bt Transgene		Means parati		Mean Ear Injury (cm²)	Standard Error
6	RR	Α	6.40	0.56	RR	Α			5.75	0.70
4		A B	6.00	0.56	RR2	Α	В		3.82	0.70
		ВС	4.67	0.55	YHR	Α	В	С	3.58	0.90
6		ВС	4.07	0.55	VT3P		В	C	3.47	0.59
3	RR2	C D	3.94	0.56	DGVT2P		В	C	3.09	0.90
2	RR2	CDE	3.87	0.56	SS		В	C	3.03	0.70
4	YHR	CDEF	3.67	0.59	VT2P		В	C	2.71	0.70
5	VT3P	CDEF	3.48	0.55	VYHR			С	1.18	0.90
1	SS	CDEF	3.10	0.56	ECC				C! !	
1	DGVT2P	DEF	3.00	0.59	Effect (a	on Ea Irea c		ıry		bution to tion (%)
5	VT2P	DEF	2.97	0.56	(5		··· <i>,</i>			
6	SS	DEF	2.85	0.56	_		netic		4.4	- 40
3	VT3P	E F	2.33	0.55	-	t inci transg	uding zenel		Té	5.18
2	VT2P	F	2.22	0.56						
1	VYHR	G	0.39	0.59	Bt	trans	gene		43	3.95

G 0.39 0.59

Bt transgene is a significant factor relating to the amount of ear injury caused by insect feeding (P<.0001). The Bt transgenes accounted for 44% of the variation relating to insect injury. Hybrid family was also statistically significant (P=0.003), but played a much smaller role than *Bt* transgene accounting for 16% of the ear injury variation. This means that the Bt transgene is almost 3 times as important as hybrid family genetics when measuring insect derived ear injury. Looking at the transgene effect across the hybrids, hybrids containing no Bt transgenes (RR, and RR2) have significantly more insect ear injury, than hybrids with *Bt* transgenes (P=0.014). Also, the hybrid containing the Agrisure® Viptera™ Bt transgene (VYHR) had 5 times less injury than its closest competitor. These differences were seen even under the modest ear feeding pressure observed during 2016 (>12 cm² of ear injury has been previously seen in this location).

OBJECTIVE 2: YIELD RESULTS

Hybrid Family	<i>Bt</i> Transgene		M Sep	lean arat		Mean Bu/Acre	Standard Error	<i>B</i> Trans		Means Separation	Mean Bu/Acre	Standard Error
2	VT2P	Α				133.61	5.19	RF	R2	Α	117.46	6.37
2	RR2	Α	В			131.78	5.19	VT	2 P	A	116.52	6.37
3	VT3P		В	С		117.75	5.15	YF	łR	A	110.74	7.45
3	RR2			C		116.24	5.19	VT	3P	A	110.66	5.66
4	YHR			C	D	112.10	5.25	DGV	T2P	A	109.14	7.45
								S	S	A	107.78	6.37
5	VT3P			C	D	111.72	5.15	VY	HR	A	106.17	7.52
5	VT2P			С	D	110.88	5.19	R	R	A	101.20	6.37
1	DGVT2P			C	D	107.7	5.25		-cc .	\\'.		
1	SS			C	D	106.9	5.19	Effect on Yield			Contribution to	
6	SS			C	D	104.86	5.19	•		els/Acre)	Varia	tion (%)
6	VT3P			C	D	103.74	5.15		•	Genetics		
4	RR				D	101.16	5.19		[not including		34.00	
Л	WUD				D	00 552	E 70		<i>Bt</i> tra	nsgene]		

85.95

RR

OBJECTIVE 2: YIELD RESULTS CONTINUED

Hybrid family genetics accounted for 34% of the variation of yield and was significant (P<0.0001). The Bt transgenes accounted for only 19% of the variation in yield which is significant (P=0.032), but when it comes to yield the hybrid family is twice as important as Bt transgene. Although the Bt transgene effect influenced yield under our modest earfeeding pressure, hybrid genetics played a much larger role.

OBJECTIVE 3: REVIEW FINANCIAL INDICATORS

Hybrid Family		Solos	ted Input	Costs		First	10 Year	Cumulative		
		Selec	tea input	COSIS		Year	Total Cash	Total Cash	Net Cash	10-Yr Ca
	Bt Transgene	Seed Cost		Hauling	Yield/AC in Bushel/Acre	Price/	Receipts	Costs	Farm Income	Flow/Ac
		in \$/Bag	in \$/Ac.	in \$/Ac		Bu. (b)	x \$1,000	x \$1,000	x \$1,000	x \$1,00
6	SS	270	67.5	20.40	104.1	\$3.25	0.37	0.48	-0.11	-1.05
6	VT2P	240	60	19.96	101.9	3.25	0.37	0.47	-0.10	-1.04
6	No Bt (RR)	180	45	16.03	81.8	3.25	0.30	0.47	-0.17	-1.71
1	DGVT2P	300	75	21.04	107.3	3.25	0.38	0.49	-0.10	-1.02
1	SS	300	75	20.91	106.7	3.25	0.38	0.49	-0.11	-1.05
5	VT3P	280	70	21.95	112.0	3.25	0.40	0.48	-0.08	-0.75
5	VT2P	250	62.5	21.43	109.3	3.25	0.39	0.47	-0.08	-0.75
2	VT2P	250	62.5	27.10	138.3	3.25	0.49	0.45	0.04	0.43
2	No <i>Bt</i> (RR2)	200	50	26.60	135.7	3.25	0.48	0.44	0.05	0.49
3	VT3P	280	70	23.46	119.7	3.25	0.43	0.47	-0.04	-0.42
3	No <i>Bt</i> (RR2)	200	50	22.72	115.9	3.25	0.41	0.45	-0.03	-0.30
4	VYHR	280	70	19.07	97.3	3.25	0.35	0.49	-0.14	-1.39
4	YHR	240	60	22.04	112.5	3.25	0.40	0.46	-0.06	-0.58
4	No Bt (RR)	200	50	19.83	101.2	3.25	0.35	0.46	-0.09	-0.92

The financial indicators listed above are rough estimates of the profitability of each hybrid when including inputs such as seed price and hauling costs under the modest ear-feeding pressure experienced in 2016. Members of hybrid family 1 performed similarly. Both members of hybrid family 2 (RR) had the highest cumulative 10-year cash flow projection (CFP). However hybrid family 2 (RR) (\$490/acre) was more profitable than its (VT2P) counterpart (\$430/acre). Hybrid family 3 (RR2) had a higher 10-year CFP over its (VT3P) counterpart. Hybrid family 4 saw its highest return with the (YHR) Bt transgene package followed by (No Bt (RR)) and following by VYHR due to the high input costs under this modest ear-feeding pressure. Hybrid family 5 (VT3P) slightly outperformed (VT2P) in yield, but the increased seed cost for (VT3P) made their 10-year CFP identical. Hybrid family 6 (SS) and (VT2P) both performed similarly beating out their (RR) counterpart in 10-year CFP even though the input costs were double. (Provided by Mac Young: based on experimental findings)

CONCLUSIONS

In Texas where insect injury is common, it's likely that corn farmers would see a significant reduction in ear injury caused by lepidopteran species if their hybrids incorporate Bt transgenes. Also, not all Bt transgenes are created equal. Hybrids containing Agrisure® Viptera™ transgenes will likely experience 5x less insect feeding injury to the ear when compared to all other Bt transgenes. However, the *Bt* transgenes only accounted for 19% of the variation in yield. This means that a *Bt* transgene will likely not make up for a poor hybrid selection. A farmer would be prudent to select a high yielding hybrid before selecting a *Bt* transgene package although both are important in Texas.

REFERENCES

- [4] Brewer, M., Odvody, G., Anderson, D., & Remmers, J. (n.d). A Comparison of Bt Transgene, Hybrid Background, Water Stress, and Insect Stress Effects on Maize Leaf and Ear Injury and Subsequent Yield. *Environmental Entomology*, 43(3),
- [5] Buntin, G., Flanders, K., & Lynch, R. (2004). Assessment of experimental Bt events against fall armyworm and maize earworm in field maize. Journal Of Economic Entomology, (2)
- [7] Harding, J. (1976). Heliothis spp.: seasonal occurrence, hosts and host importance in the Lower Rio Grande Valley. *Environmental Entomology*, (4), 666-668.
- [1] Ni, X., Wilson, J. P., Buntin, G. D., Guo, B., Krakowsky, M. D., Lee, R. D., & Schmelz, E. A. (2011). Spatial patterns of

aflatoxin levels in relation to ear-feeding insect damage in pre-harvest maize. Toxins, 3(7), 920-931.

- [3] Smith, M. S., & Riley, T. J. (1992). Direct and interactive effects of planting date, irrigation, and maize earworm Lepidoptera: Noctuidae) damage on aflatoxin production in pre-harvest field maize. Journal of economic entomology, 85(3), 998-1006.
- Sousa, F. F., Mendes, S. M., Santos-Amaya, O. F., Araújo, O. G., Oliveira, E. E., & Pereira, E. G. (2016). Life-History Traits of Spodoptera frugiperda Populations Exposed to Low-Dose Bt Maize. Plos ONE, 11(5), 1-18. doi:10.1371/journal.pone.0156608
- [2] Vickery, R. A. (1929). Studies on the fall army worm in the Gulf Coast district of Texas. US Government Printing Office.
- [8] Wechsler, S. J. (Ed.). (2016, November 2). Recent Trends in GE Adoption. Retrieved October 15, 2016, from https://www.ers.usda.gov

ACKNOWLEDGEMENTS

Thanks!!!

Darwin Anderson, Travis Ahrens, David Olsovsky Texas A&M AgriLife Research, Corpus Christi Seth Murray, and Jacob Pekar Department of Plant Science, TAMU Thank you to our seed providers Dekalb/Monsanto,

Pioneer, and B&H Genetics

19.48

Bt transgene

United States Department of Agriculture National Institute of Food and Agriculture