Common diseases of vegetable crops and their management

Olufemi J. Alabi

Assistant Professor & Extension Specialist Department of Plant Pathology & Microbiology Texas A&M University alabi@tamu.edu

Vegetable production process

Site selection

Land preparation Seed selection Planting Crop maintenance

Harvest

Important terminologies

- Pathogens: biological agents that cause disease
- Symptoms: visible reaction of plant to infection by disease-causing pathogen
- Inoculum: part of a pathogen capable of infecting the host plant to cause the disease (e.g. spore, mycelium, bacterial cell, virus particle)
- Vector: an organism capable of pathogen transmission

Slide source: Dr. Lindsey du Toit, WSU-Mt. Vernon

Modes of pathogen spread

- Common modes of spread include
 - Soil: mostly fungi, bacteria and nematodes
 - Seeds (including vegetative propagules)
 - Insect and nematode vectors: mostly virus and virus-like organisms
 - Wind: mostly fungi, wind-driven pollen- and insect-transmitted viruses
 - Water: mostly fungi and bacteria
 - Human activity

Diseases caused by soilborne pathogens

Major attributes

- Pathogen inoculum can survive in soil for many years
- Inoculum may also persists in debris from infected plants <u>but not in soil</u>
- Pathogen groups involved: fungi (including omycetes), bacteria, nematodes
- Viruses may be 'soilborne' when vectored by soilborne organism
- Can affect all plant parts
- Field distribution of disease often patchy

Common examples

- Fungal rots caused by species of Phytophthora, Rhizoctonia, Fusarium, Verticillium, Macrophominia, etc.
- Bacterial rots caused by species of Erwinia, Streptomyces, Xanthomonas, Pseudomonas, etc.
- Nematodes such as Pratylenchus, Xiphenema and Meloidogyne
- Nematode-transmitted viruses such as tomato and tobacco ringspot viruses

Fusarium wilt of watermelon

Onion pink root

Inoculum can persist in soil for up to 5 years

Vine decline of cucurbits due to monosporascus root rot

Bacterial speck on tomato due to Pseudomonas syringae

Early blight of tomato

Courtesy W.R. Stevenson

Slide source: Dr. Claudia Nischwitz, Utah State University

Root-knot nematodes

http://nematology.umd.edu/rootknot.html

Slide source: Dr. Claudia Nischwitz Utah State University

Management

- Pay attention to cropping history of soil
- Plant resistance or tolerant cultivars
- Plant in well-drained soils
- Avoid overwatering especially during warm weather
- Practice proper field sanitation
- Practice crop rotation
- Apply pre-plant fungicides or fumigants

Diseases caused by seedborne pathogens

Major attributes

- May affect seed storability, appearance, viability and germination
- May cause disease in emerging seedling or plant
- Not all seedborne pathogens are seedtransmitted
- Seedborne microorganisms:
 - include fungi, bacteria, viruses and nematodes
 - may be saprophytic, pathogenic or opportunistic

Common examples

- Fungal rots caused by species of Phytophthora, Rhizoctonia, Fusarium, Verticillium, Macrophominia, etc.
- Bacterial rots caused by species of Erwinia, Streptomyces, Xanthomonas, Pseudomonas, etc.
- Nematodes such as Pratylenchus, Xiphenema and Meloidogyne
- Nematode-transmitted viruses such as tomato and tobacco ringspot viruses

Seed borne Verticillium dahliae in spinach

Slide Source: Lindsey du Toit, WSU, Mt. Vernon

Bacterial leaf blight of carrot Xanthomonas campestris pv. carotae

Black rot of crucifer Xanthomonas campestris pv. campestris

Alternaria leaf blight of carrot

Cucumber mosaic virus on spinach

Potato zebra chip

www.ars.usda.gov

Slide source: Dr. Claudia Nischwitz, Utah State University

Management

- Disease avoidance:
 - Buy seeds from certified sources
 - Seed health testing
- Seed treatment:
 - physical e.g. hot water, steam (hot or dry)
 - chemical e.g. chlorine, fungicides
 - Biological agent formulations
- Maintain proper seed storage conditions

Diseases caused by windand/or water-borne pathogens

Major attributes

- Mostly fungi and oomycetes
- Inoculum sources include:
 - debris of previous crop
 - contaminated seeds and irrigation waster
- Spores can travel several miles aided by wind and/or rain
- Excessive and prolonged moisture conditions may promote disease
- Capable of causing significant crop loss
 under favorable conditions

Powdery mildew

https://nhvegfruitnews.wordpress.com

http://www.ohmyfungi.com/fungi/

Anthracnose fungi

https://plantpathology.ces.ncsu.edu

Phytophthora (late) blight disease

Downy mildew of spinach

Management

- Plant resistant/tolerant varieties
- Site selection and proper field sanitation
- Adequate spacing
- Crop rotation
- Scout early, rough and dispose symptomatic plants
- Avoid overhead irrigation
- Chemical control

- apply based on timely disease scouting

Powdery mildew - Cantaloupe

Untreated plot

Treated plot

Diseases caused by insectvectored pathogens

Major plant pathogen insect vectors

Major attributes

- Mostly viruses and virus-like organisms, some fungi and bacteria
- Active or passive transmission
- Inoculum source could come from within or outside the field plot
- Weeds and other crops may serve as pathogen reservoirs
- Pattern of spread often linked to vector behavior/activity
- Vector may retain ability to transmit for life

Mode of vector transmission key to effective management

Mode	Acquisition time	Inoculation time	Vector
Non-persistent	Short (seconds to minutes)	Short (seconds to minutes)	Mostly aphid- borne viruses
Persistent	Long (min to days) Latency following acquisition	Long (min to days) Retains ability to transmit for life	Some aphids Mostly leaf, plant and tree hoppers
Semi-persistent	Medium (few min to hours)	Medium (few min to hours)	Some aphids, whiteflies, psyllids, mealybugs, scale

insects

Common examples

- Whitefly-transmitted tomato yellow leaf curl virus complex
- Thrips-transmitted tospoviruses
- Aphid-transmitted potyviruses
- Nematode-transmitted nepoviruses

Whitefly-transmitted TYLCV

TMV 00040 2 Q ag dia: Q a CMV 00029 TSWV 00026 INSV 00029

Thrips-transmitted tospoviruses

www.sardi.sa.gov.au

pnwhandbooks.org

Aphidtransmitted viruses on peppers

Potato zebra chip

Management

- Plant resistant/tolerant varieties
- Vector control
- Practice proper field sanitation
- Host-free period
- Use of reflective mulch
- Use of 'trap' crops
- Crop rotation
- Planting in protective structures

Managing TYLCD (Weslaco, 2016)

Parameters evaluated included planting dates, mulch type, variety

Abiotic diseases of vegetables

Major attributes

- May be due to:
 - nutrient deficiencies or toxicities
 - mechanical damage
 - abnormal environmental condition
 - excessive drought or moisture
 - chemical injury
- Sudden appearance of symptoms
- Uniformity of infection on the field
- May predispose plant to pathogen infection

Common examples

- Foliar discolorations due to deficiencies of macro and micro nutrient elements
- Wilting due to excessive heat, drought or cold stress
- Edema due to excessive moisture
- Sunscald due to exposure of fruit to excessive sunlight
- 'Burn' due to sulfur application at elevated temperature
- Herbicide drift injury

Nutrient deficiency symptoms

Management

- Conduct soil and leaf tissue tests prior to decision on nutrient application
 - deficiency in plant may be due to lack of nutrient in soil or impaired uptake by plant
- Choice of planting date
- Use of mulch (plastic or organic) to reduce moisture loss
- Do not apply herbicides during high wind currents

Disease management – a process

Site selection

Land preparation Seed selection Planting Maintenance

Harvest