Chapter 5 Watershed Protection Plan Implementation Strategies Introduction

The watershed approach was used to direct the implementation strategies. The guiding principles of this approach interlace partnership with stakeholders of various backgrounds with science backed management techniques for the specific watershed. An analysis was completed to identify major sources of *E. coli* in the watershed, their potential loading distribution, and actual *E. coli* loads are outlined previously in Chapter 4. Recommended management strategies to achieve needed *E. coli* reductions in Rowlett Creek watershed were developed based on local knowledge, load estimations, and understanding of current water quality problems across the watershed. This information combined was used to make informed decisions regarding management measures to most effectively improve water quality in the watershed.

The WPP implementation strategies receive input from stakeholders to not only address the readily data available sources, but also the unmodeled sources of water quality degradation. This plan implementation focuses on these identified sources: urban stormwater, per waste, feral cats, livestock, agricultural runoff, lawn residue runoff, limited NPS runoff education resources, illegal dumping and litter. These are not representative of all the sources of bacteria in the watershed but are the largest contributors that can be managed to mitigate the pollution.

Management Measures

The management measures detailed are suggestions with identified entities whose voluntary participation would be needed, or recommended, for the measure to be carried out. Because the watershed has multiple sources of *E. coli*, many different management options will be recommended to reduce the most amount of *E. coli* from the highest sources. Because a diverse approach was used, options can be chosen that are the most feasibly managed while also having the highest chance of producing *E. coli* reductions. This is not an exhaustive list of measures but guidance to address the various known sources of pollution learned throughout this analysis to mitigate bacterial pollution. Many of the practices outlined can additionally help reduce the nutrient levels found in the segment to improve the overall stream health. The management measures described are:

- 1. Mitigate urban stormwater runoff problems
- 2. Reduce pet waste runoff and promote proper disposal
- 3. Expand and promote BMPs for feral cat populations
- 4. Promote the development of WQMPs or conservation plans
- 5. Conduct Urban NPS Pollution Education programs
- 6. Reduce illegal dumping and litter
- 7. Promote BMPs for urban lawn care management
- 8. Promote adaptive urban flood management

The loading estimates presented with each recommendation are based on the predicted worst-case scenario loadings that were defined in Chapter 4 at mid-range flow rates. Not all sources could be modeled so not all management measures can have a quantifiable *E. coli* load reduction. These measures are still known to have a potential reduction on water quality pollutants that further the objectives of reducing *E. coli* and nutrient concerns. The estimates cannot predict actual loadings or load

reductions that are occurring in the streams of the watershed. Actual reductions depend on several factors that cannot all be accounted for thus adaptive implementation strategies may be needed. Financial and technical resources for these measures are included in Chapter 6.

Management Measure 1: Mitigate urban stormwater runoff problems

A source of *E. coli* and nutrients entering water bodies in the watershed is stormwater generated in urban areas. Due to the high percentage of total land cover being developed in the watershed, the chances of bacteria loading from urban impervious surfaces is relatively high. The main objective of this management measure is to collaborate with local municipalities to identify and install green infrastructure (GI) BMPs to manage stormwater runoff that can serve as demonstrations for stakeholders and residents throughout the watershed. Additionally, expand existing stormwater management education and outreach programs to educate residents and stakeholders on stormwater BMPs. GI BMPs can also be described as nature-based solutions or blue-green infrastructure, these practices are using nature-based or green engineering to mitigate stormwater pollution. Options include rain gardens, rain barrels/cisterns, permeable pavements, bioswales, bioretention, green roofs, and riparian buffers. Projects should include monitoring the effectiveness of the BMPs implemented and apply modifications as necessary to make sure water quality requirements are being met for the watershed.

These BMPs can be designed based on the precipitation amount, amount of pollutant reduction needed, location for implementation. Load reduction will depend on the location, size, and type of design installed. Thus, the most effective BMP can be installed based on each site selected under technical guidance. The entities involved in executing the recommendations include Texas A&M AgriLife, Texas A&M Forest Service, Texas Water Resources Institute, cities, counties, contractors, and property owners. Table 5-1 summarizes management measures for urban stormwater management.

Table 5-1 Management Measure 1: Mitigate urban stormwater runoff problems

Pollutant Source: Urban Stormwater Runoff

Problem: Fecal bacteria, nutrient loading, and erosion from stormwater runoff in developed areas **Objectives:** 1. Identify and implement green infrastructure (GI) (i.e., LID) BMPs in coordination with cities, counties, and property owners 2. Organize general stormwater management education and outreach programs. 3. Educate residents about stormwater BMPs 4. Monitor the effectiveness of BMPs.

Location: Entire watershed

Critical Areas: Urban areas of the watershed that are already developed

Goal: Reduce E. coli loading associated with urban stormwater runoff through implementation of green stormwater infrastructure BMPs as appropriate and increase awareness of stormwater pollution and management.

Description: Potential locations and types of GI BMPs for stormwater management demonstration projects will be identified in coordination with the local cities, counties, public works, and property owners. Examples of GI include green roofs, riparian buffers, vegetated bioswales, bioretention, permeable pavement, etc.

Implementation Strategy			
Participants	Recommendations	Period	Costs

Cities, counties, property owners, contractors	Identify and install GI BMPs as funding becomes available	2025-2034	~\$6-\$45/sqft
Texas A&M Forest Service, cities, counties, TWRI	Conduct riparian, wetland, and/or stream restoration projects and monitoring	2025-2034	~\$500,000/projec t
TWRI, AgriLife Extension, property owners, cities, counties, regional entities	Deliver education and outreach to property owners on stormwater BMPs, in multiple languages where applicable	2025-2034	N/A
Estimated Load Reduction			
Installation of stormwater GI BMPs that reduce runoff or treat bacteria will result in direct reductions in bacteria loading. Potential load reductions were not calculated because the size, type, and location of projects installed will determine the potential load reductions and these have not yet been identified			
Effectiveness	Moderate to High: The effectiveness of GI BMPs at reducing bacteria and nutrient loadings is dependent on the design, site, and maintenance of the BMP		
Certainty	Moderate: Installation of GI BMPs requires sustained commitment from city officials or property owners.		
Commitment	Moderate to High: Urban stormwater managem	ient is a priori	ty for cities.
Needs	High: Support in the form of financial, technical, and educational resources is needed to identify the best application of and adoption of GI solutions.		

Management Measure 2: Reduce pet waste runoff and promote proper disposal

Due to the amount of urban area within the watershed, dog waste is a large potential contributor to E. coli loads in the watershed, and through analysis was identified as the greatest source. There are an estimated 134,975 dogs within the watershed. Most dogs live either in or near a human dwelling, or in an animal shelter, making managing their waste much simpler than other potential sources in the watershed. If not properly managed, dog waste is transported downstream during storm events, mostly via overland flow. Picking up and properly disposing of pet waste is a simple and effective way to reduce E. coli and excess nutrients in the watershed. Recommendations for management include installing and maintaining pet waste collection stations in public areas like parks and trails and expanding education campaigns showing the environmental benefits of properly disposing of pet waste. Education and outreach should target residents that are renters living in multi-family housing complexes and the property managers since they have the densest pet populations and concentration of pet waste per land area. Also, develop and implement K-12 student education through educator programs to teach students who are pet caretakers, additionally children usually share what they learned with family members that can access some hard-to-reach audiences. Pet waste stations for multi-family properties and HOA managed dog parks should be supported with resources. Installing GI BMPs near dog parks, trails, multifamily complexes close to the waterways can help further reduce bacterial and nutrient loading from pet waste. Table 5-2 summarizes management measures for reducing pet waste runoff.

Due to the large portion of contributions linked to dogs in the watershed, making up an estimated 57% of *E. coli* loading, measures to reduce pet waste will provide the greatest reductions. Assuming 12% of pet owners reached change their behavior with a 75% effectiveness at removing bacteria, disposing of dog waste could result in an annual *E. coli* reduction of 1.40E+16 cfu. The complete explanation of the calculations and assumptions used for this estimate are in Appendix C.

Table 5-2 Management Measure 2: Reduce pet waste runoff and promote proper disposal

Pollutant Source: Pet Waste (Dog)

Problem: Improperly disposed dog waste is left on land surfaces and runoff leads to bacteria and nutrient loading into streams

Objectives: 1. Expand education and outreach to residents on impacts of pet waste and need for proper disposal. 2. Properly stock, maintain, and install pet waste stations

Location: Enite watershed

Critical Areas: Multi-family residences and other high pet concentration areas in close proximity to waterways

Goal: Reduce the amount of dog waste in the watershed that may wash into water bodies during runoff events by providing educational and physical resources to increase stakeholder awareness of the water quality and potential health issues caused by excessive dog waste.

Description: Expand distribution of educational messaging regarding the need to properly dispose of pet waste in the watershed. Specifically target renters, multi-family property management, K-12 educators, and general public. Stock, maintain, or replace existing dog waste stations in parks and other public areas to facilitate increased proper disposal of dog waste.

Implementation Strategy			
Participants	Recommendations	Period	Costs
Cities, counties,	Develop and provide educational resources and	2025-	
property	outreach, in multiple languages where applicable	2034	\$50,000
owners, HOAs,			
ISDs			
Cities, counties,	Provide needed maintenance supplies for at least 50	2025-	
property	pet waste disposal stations @ \$85/station	2034	\$4,250
owners, HOAs			
Cities, counties,	Install/replace 25 pet waste disposal stations @	2025-	
property	\$500/station	2034	\$12,500
owners, HOAs			
Cities, counties,	Identify and install GI BMPs as funding becomes	2025-	~\$6-
HOAs	available for onsite treatment of runoff	2034	\$45/sqft
Cities, counties,	Development/adoption and enforcement of proper pet	2025-	
HOAs	waste disposal ordinances and by-laws	2034	N/A
	Estimated Load Reduction		L
Load reducti	ons resulting from this management measure are reliant c	on changes in	people's
behavior. Assu	ming 12% of targeted individuals respond by properly disp	posing of pet	waste, the
annual load reduction would be approximately 1.40E+16 cfu of E. coli per year (Appendix C).			
Effectiveness	High: Collecting and properly disposing of dog waste is k	nown to prev	vent E. coli
	and nutrients from entering local waterways and will dir	ectly reduce	the quantity
	of E. coli in the watershed.		

Certainty	Low: Many dog owners already collect and properly dispose of dog waste. Those who do not may be a difficult audience to reach or convince that dog waste should be collected and discarded properly despite their respective reasons for not doing so.
Commitment	Moderate: Most parks, trails, and residential complexes currently have pet waste stations. However, maintenance is less frequently conducted than needed. Meanwhile, little to no enforcement occurs to fine owners that do not pick up after their pets.
Needs	Moderate to High: Pet waste stations are relatively inexpensive, and the additional work required to maintain stations should be minimal. Installation of GI BMPs need financial, technical, and educational resources support.

Management Measure 3: Expand and Promote BMPs for feral cat populations

Due to the amount of urban area within the watershed, feral cat waste is another large potential contributor to *E. coli* loads in the watershed, and through analysis was identified as the second greatest source. There are an estimated 98,800 feral cats within the watershed, though this number can only be assumed based on some national estimates. Most feral cats live outdoors near a human dwelling and stay in what are referred to as colonies with populations of 10-200, making managing their waste more complicated than household pets. Implementing trap-neuter-release (TNR) style programs can reduce feral cat colony populations, though this requires intensive long-term (e.g., 10+ years) management to produce these results. Successful programs incorporate strong adoption/fostering efforts, coordinate with cat colony caregivers, make constant trapping efforts, and implement strategies to reduce pet abandonment. Providing financial resources for current TNR programs can reduce the *E. coli* and nutrient loading in the watershed. Table 5-3 summarizes management measures for feral cat populations.

Recommendations include providing low-cost pet and feral cat sterilizations, providing cat traps for current or new programs, and educating pet owners and colony caregivers on BMPs. Some BMPs for managing feral cat colonies include increasing the number of trapped feral cats introduced into adoption programs if cat disposition is suitable for a household, rather than returning them outdoors. Several local operations support and provide these BMPs, these include the Humane Society of North Texas, Feral Friends, City of Garland TNR Program, and Texas Coalition for Animal Protection. Additional resources can be found at North Texas — TNR Texas. It's important to educate residents and other stakeholders about the impacts feral cats have on water quality and educational materials on BMPs should be developed in collaboration with local animal rescues and clinics, and TNR programs. Education and outreach should target residents who are renters living in multi-family housing complexes and property managers since they have dense populations and higher pet abandonment. Installing GI BMPs for waste runoff management near colonies, such as rain gardens or small sand pits where cats can eliminate waste without it running directly into stormwater systems. Some plants and substrates can be considered for these BMPs that can either act as a deterrent (e.g., lavender, Texas verbena/Verbena halei, horsemint/Monarda citriodora, pebbles, etc.) or attractant (e.g., sand, wood chips, catmint/Nepeta x faassenii, etc.).

It must be stated that the efficacy of TNR programs has been highly debated, though several studies have shown they can be effective at reducing populations. Assuming 57% of annual feral cat population are

sterilized from 4 14-day long capture events with a 3% success rate over 10 years brings a 25% successful population reduction, the estimated annual load reduction would be approximately 1.62E+15 cfu of *E. coli* per year. A more detailed explanation of the calculations and assumptions used for this estimate are in Appendix C.

Table 5-3 Management Measure 3: Expand and promote BMPs for feral cat populations

Pollutant Source: Feral Cat Waste

Problem: Fecal bacteria loading into streams through runoff in developed urban areas from feral cats

Objectives: 1. Reduce fecal bacteria loading from feral cats through implementation of management programs. 2. Expand education and outreach to residents and stakeholders on BMPs. 3. Monitor the effectiveness of BMPs.

Location: Enite watershed

Critical Areas: Urban areas in close proximity to waterways

Goal: Reduce the amount of feral cat waste in the watershed that may wash into water bodies during runoff events by providing educational and physical resources to manage feral cat population increase stakeholder awareness of the water quality and potential health issues.

Description: Expand and implement Trap-Neuter-Return (TNR) type programs across the watershed to reduce feral cat colony populations over the course of 10 years of implementation. Educate residents and stakeholders on water quality impacts and the BMPs for managing cat colonies. Voluntarily implement efforts to reduce feral cat populations throughout the watershed by reducing food supplies, bait trapping feral cats, reducing pet abandonment, and increasing adoption.

Implementation Strategy			
Participants	Recommendations	Period	Costs
Cities, property	Provide educational resources and outreach on	2025-	
owners, HOAs, local	BMPs to residents, in multiple languages where	2034	\$50,000
rescues	applicable		
Local vet clinics,	Provide low-cost pet and feral cat sterilization for	2025-	
local rescues, cities,	at least 400 cats @ \$50/cat	2034	\$20,000
counties, residents			
Local vet clinics,	Provide cat trapping supplies for 40 traps @	2025-	
local rescues, cities,	\$120/trap	2034	\$4,800
counties			
Cities, counties,	Identify and install GI BMPs as funding becomes	2025-	~\$6-
HOAs	available for onsite treatment of runoff	2034	\$45/sqft
	Estimated Load Reduction		
Load reductions resulting from this management measure are reliant on assumed high trapping rates			
and changes in peop	le's behavior. Assuming 57% of annual feral cat popula	ation are ster	ilized for 10-
year program, the annual load reduction would be approximately 1.62E+15 cfu of E. coli per year			
(Appendix C).			
Effectiveness	Moderate: Reduction in feral cat population will resu	It in a direct	decrease in
	bacterial loading to the streams. However, sterilizing	enough cats	to decrease

their overall population will be difficult.

Certainty	Low: Increasing resident participation, even after receiving education and related resources, in TNR programs is difficult and thus limits the program capacity. Feral cats can often be difficult to track and then successfully capture.
Commitment	Moderate to High: TNR programs already exist throughout the watershed and reducing feral cat populations is important to conservation groups, animal rescues/activists, and the public. Meanwhile, not all Department of Animal Services in this watershed have TNR programs or partnerships with NGOs that do.
Needs	Moderate to High: Low-cost clinic programs are relatively inexpensive for providing services to cats as well as the educational resources and outreach needed. Significant funding is needed to expand shelter availability to increase adoptions.

Management Measure 4: Promote the development of WQMPs or conservation plans

E. coli from livestock is a small contributor of *E. coli*, and a potential source of nutrients, in the watershed. Livestock waste is mostly transported during runoff events, from upland areas to downstream waters. With livestock, fecal deposition is dependent on the location of food, water, and shelter, and is therefore easier to control than other types of wildlife that aren't contained. Moving feeding locations and adjusting fencing to control their location can reduce *E. coli* runoff. Due to the potential *E. coli* load from livestock, these adjustments have the potential to reduce the amount of *E. coli* that ends up in runoff and into waterbodies within the watershed.

A water quality management plan (WQMP) or conservation plan (CP) is a site-specific plan developed through and approved by soil and water conservation districts or NRCS for agricultural or silvicultural lands. The plan includes appropriate land treatment practices, production practices, management measures, technologies or a combination of two or more practices. The purpose of WQMPs is to achieve a level of pollution prevention within state water quality standards. The NRCS, TSSWCB, and local SWCDs provide technical assistance for developing plans, some CPs offer financial assistance for landowners. There is a goal of developing and implementing up to 10 plans in the watershed. Agriculture lands are sparse in the watershed and are mainly found in subwatersheds 1, 2, and 5. The implementation of these plans estimate an annual *E. coli* reduction of 1.40E+16 cfu. The complete explanation of the calculations and assumptions used for this estimate are in Appendix C.

Several equestrian stables are found along Rowlett and Cottonwood Creeks, depending on operation practices these may not qualify as agriculture use under some local government land appraisal districts. This also may apply to some small-scale or hobby farms that exist around the area. Thus, these operations may need different access to resources for implementing BMPs based on their uses. Some BMPs identified for stables include on-site composting of manure, vegetated filtering strips, and bioswales to reduce bacteria and sediment loading into the waterways. Table 5-4 summarizes management measures for livestock.

Table 5-4 Management Measure 4: Promote the development of WQMPs or conservation plans

Pollutant Source: Livestock

Problem: Direct and indirect fecal bacteria and nutrient loading due to livestock in streams, riparian degradation and overgrazing

Objectives: 1. Work with landowners to develop property-specific CPs and WQMPs to protect water quality and provide technical and financial assistance. 2. Reduce fecal loading from livestock in riparian areas. 3. Educate producers, hobby farm owners, and equestrian stable managers on BMPs

Location: Subwatershed 1, 2 and 5, and properties near waterways

Critical Areas: Properties with creek and riparian zone access

Goal: Reduce E. coli loading from livestock through education and developing WQMPs/CPs focused on minimizing the time spent by livestock in the riparian zones and better use of grazing resources across the property.

Description: CPs and WQMPs will be developed with operators to implement BMPs that reduce water quality impacts from overgrazing, time spent in and near streams or riparian areas, and runoff from grazed lands. Practices will be identified and developed in consultation with NRCS, TSSWCB and local SWCDs as appropriate. Education program delivery to support and promote implementation adoption from livestock producers, hobby farm operations (i.e., small-scale farms), and equestrian stables.

Implementation Strategy

	inipiciticitation strategy			
Participants	Recommendations	Period	Costs	
Producers, NRCS,	Develop, implement, and provide financial assistance	2025-2034	\$75,000	
TSSWCB, SWCDs	for up to 5 livestock WQMPs/CPs @ \$15,000/plan			
AgriLife Extension,	Deliver education and outreach programs and	2025-2034	N/A	
SWCDs, cities,	workshops to landowners, in multiple languages			
hobby farmers,	where applicable			
stable managers				
	Estimated Load Reduction			
Prescribed mana	agement will reduce loadings associated with livestock b	y reducing run	off from	
pastures and rar	ngeland as well as reducing direct deposition by livestock	. Implementat	ion of 10	
WQMPs and CPs is	estimated to reduce annual loads from livestock by 6.14	E+13 cfu of E. o	coli per year	
in the watershed	in the watershed (Appendix C). Reductions related to education and outreach for hobby farms and			
non-grazing equ	estrian stables are not quantified but will result in load r	eductions that	: vary by	
operation size and applicable practices.				
Effectiveness	High: Decreasing the time that livestock spend in ripari	an areas and r	educing	
	runoff through effectively managing vegetative cover w	ill directly red	uce	
	nonpoint source contributions of bacteria and other po	llutants to cre	eks.	
Certainty	Moderate: Landowners acknowledge the importance o	f good land ste	ewardship	
	practices and management plan objectives. However, f	inancial incent	ives are	
	often needed to promote WQMP and CP implementati	on.		
Commitment	Moderate: Landowners are willing to implement stewa	rdship BMPs s	hown to	
	improve productivity. Costs are often prohibitive, so fir	ancial incentiv	es are	
	needed to increase implementation rates.			
Needs	High: Financial costs are a major barrier to promote im	plementation.	Education	
	and outreach are needed to demonstrate benefits of pl	an developme	ent and	
	implementation to producers and BMPs to small-scale	farms and equ	estrian	
	stable owners.	-		

Table 5-5 Management Measure 5: Conduct Urban NPS pollution education workshops.

Pollutant Source: Landowners and Residents Without Education Resources Problem: Due to lack of knowledge about stormwater, pet waste, lawn, grazing lands, and water resource management, landowners and residents might not adopt BMPs for them

Objectives: 1. Promote and expand education and outreach efforts in the watershed. 2. Develop and expand education and outreach efforts for K-12 students in the area. 3. Provide technical assistance and training on watershed education.

Location: Entire watershed

Critical Areas: K-12 schools and colleges

Goal: Educate landowners, residents, and students about sources of E. coli and other pollutants in the watershed and various ways to manage them.

Description: Education delivery will mainly focus on BMPs for urban stormwater pollution using GI, pet waste, and landscape and water resource management. Work with local ISD educators to determine existing needs in their schools and what would be helpful. Develop or integrate existing educational materials for schools and provide training opportunities for teachers to learn the materials and how to administer them effectively.

Implementation Strategy			
Participants	Recommendations	Period	Costs
AgriLife Extension,	Develop and deliver educational and outreach	2025-2034	N/A
TWRI, Counties,	materials to residents, landowners, and colleges		
Watershed			
Coordinators			
AgriLife Extension,	Develop and deliver education and outreach	2025-2034	~\$25,000
TWRI, ISDs,	materials to teachers and students. Train teachers		
Watershed	on watershed protection planning.		
Coordinators			
Estimated Load Reduction			
Load Reductions from this management measure were not quantified, though if behaviors change			
they will reduce loads.			
Effectiveness	Low to Moderate: While there may not be a direct correla	ation to wate	r quality
	improvement, education and outreach is an effective too	l to create aw	areness
	and behavior change.		
Certainty	Moderate: Predicting behavior change is difficult but can	be tracked th	rough
	surveys, tests, and other evaluation methods.		
Commitment	Moderate to High: There is a lot of interest in the watersh	ned in GI and	working
	with youth and general public to develop environmental of	conservation	
	programming.		
Needs	Moderate: Some financial and technical resources will be	required to d	levelop
	educational materials and coordinate training.		

Management Measure 5: Conduct Urban NPS Pollution Education workshops

The main objective is to continue and expand the existing NPS Pollution Education workshops educating landowners and residents on identifying sources of *E. coli*, nutrients and other pollutants in the watershed that originate from urban sources. Often, new and/or small acreage landowners and multi-

family property managers may be unaware of BMPs and the resources available for implementation. Educating property managers, landowners, and residents to manage stormwater, pet waste, lawn, grazing lands, and water resource management is very important to prevent *E. coli* and nutrients from getting into nearby water bodies. A key aspect of conducting educational workshops is to expand these opportunities for K-12 schools to teach educators about urban NPS pollution and its BMPs, so these can be integrated into lessons delivered to students. These education workshops will further protect and improve local water resources by ensuring that appropriate persons are informed about new techniques, requirements, and resources. Table 5-5 summarizes management measures for urban NPS pollution education.

Table 5-6 Management Measure 6: Reduce illegal dumping and litter

Pollutant Source: Illegal Dumping and Litter

Problem: Illegal dumping of waste and littler accumulation in and along waterways

Objectives: 1. Promote and expand education and outreach efforts in the watershed. 2. Install and maintain trash receptacles in public areas and along water bodies 3. Support cleanups and other efforts to reduce illegal dumping with various stakeholders.

Location: Entire watershed

Critical Areas: Focus on urban areas, trails, and bridges near waterways or riparian zones

Goal: Reduce litter and illegal dumped waste that reaches the waterways throughout the watershed.

Description: Education and outreach materials will be developed and delivered to residents throughout the watershed on the proper disposal of waste materials (both nonhazardous and hazardous). Working with various volunteer organizations and related stakeholders to support cleanup efforts and outreach to reduce illegal dumping and littering.

Implementation Strategy			
Participants	Recommendations	Period	Costs
AgriLife Extension,	Develop and deliver educational and outreach	2025-2034	~\$5,000
cities, counties,	materials to residents, in multiple languages where		
nonprofits	applicable		
Cities, counties,	Expand enforcement of illegal dumping ordinances in	2025-2034	\$7,500-
municipalities,	common dumping areas, and install and maintain at		\$15,000
HOAs	least 15 trash receptacles on trails and walkways, or		
	other identified problem areas @ \$500-		
	\$1,000/receptacle		
Cities, counties,	Coordinate multiple cleanup events and similar	2025-2034	N/A
nonprofits, HOAs,	reducing illegal dumping program events		
residents, regional			
entities			
Estimated Load Reduction			
<i>E. coli</i> load reduct	ions are likely minimal from this management measure a	and were not o	uantified.
Though, preventing illegal dumping, especially animal carcasses or food products, near waterways can			
reduce bacteria loads as these attract wildlife that can directly deposit into streams.			
Effectiveness	Low: Preventing illegal dumping near waterways is likel	ly to reduce ba	icteria loads

by a small amount because, no noted instances were from animal carcasses.

Certainty	Moderate: Anticipating changes in resident behavior due to education and outreach is difficult at best. Reaching residents that illegally dump is more difficult.
Commitment	Moderate: Stakeholders indicate illegal dumping and littering occurs. However, enforcement can be difficult, and commitment of limited resources will likely remain low in some areas.
Needs	Moderate: Some financial resources will be required to install and maintain trash receptacles and develop educational materials. Though, information could be incorporated into ongoing watershed/stormwater-related educational and outreach efforts.

Management Measure 6: Reduce illegal dumping and litter

Based on stakeholder input, illegal dumping occurs in creeks within the watershed. The waste mostly consists of trash and debris that washes into and accumulates in the creeks. Figure ## shows pictures of trash accumulated along parts of Rowlett Creek in the Rowlett Creek Preserve. Due to the nature of the materials being dumped, it is unlikely that it is a major contributor to bacteria loads in the watershed. Despite that, reducing all types of pollution in the watershed increases the overall health and water quality of the watershed, and should be addressed. The development and delivery of educational and community outreach materials on proper trash disposal could be constructive. Installing and maintaining trash receptacles in and around the local public trails, walkways, and parks will reduce the amount of trash accumulating into waterways. It is also recommended that coordinating multiple cleanup events along and in streams within the watershed will reduce pollutants entering the waterways. Table 5-6 summarizes management measures to reduce illegal dumping and litter.

Management Measure 7: Promote BMPs for urban lawn care management

Nitrogen levels in the form of TKN, or organic forms, were found to be above screening levels, though these are not required to be met doing so can improve watershed health. Urban lawn residue and waste runoff carries grass clippings, leaf litter, fertilizers, and pesticides. Making it a common contributor to excess nutrients, bacteria, and other pollutants in urban watersheds if not properly managed. Educating homeowners and property managers on the BMPs for lawn care management can reduce the pollutants impacting the Rowlett Creek watershed. BMPs include properly disposing of grass clippings and fallen leaves, soil testing before applying fertilizers, and installing GI BMPs in areas near creeks. Household lawns are a likely greater contributor for this source however, there are several golf courses found on or next to the creeks of this watershed and are contributing sources. Conducting soil tests in both agricultural and urban areas can determine soil composition and nutrient levels existing. Therefore, soil testing is included to prevent nutrient runoff into nearby waterways by ensuring the proper rates and timing of fertilizer applications. This practice can also be applied to water resource management to create adaptive watering regimes so there is no excess used which increases the runoff. Installing and/or maintaining GI within golf courses can help reduce the loadings, as most properties in this watershed already implement the other practices. Similarly, the manicured or landscaped public parks can be high in fertilizer as well. Table 5-7 summarizes management measures for urban lawn care BMPs.

Table 5-7 Management Measure 7: Promote BMPs for urban lawn care management

Pollutant Source: Lawn Residue and Waste

Problem: Improper lawn care management in the form of excessive lawn residue waste, fertilizer, and pesticide runoff into streams leads to bacteria and nutrient loading

Objectives: 1. Promote and expand education and outreach to landowners on lawn care BMPs. **Location:** Enite watershed

Critical Areas: Urban areas and golf course properties near waterways

Goal: Reduce bacteria, nutrient, and chemical runoff from lawns in the watershed that may wash into waterways during precipitation events.

Description: Expand distribution of educational messaging on proper lawn care management to reduce excess runoff of bacteria and nutrients. Educate landowners on water resource management BMPs for lawn care and landscaping, proper disposal of lawn clippings, and proper application of fertilizers, pesticide, and other chemicals.

Implementation Strategy			
Participants	Recommendations	Period	Costs
AgriLife Extension,	Develop and deliver lawn care education and	2025-	
TWRI, Regional	outreach resources	2034	N/A
Entities, HOAs			
AgriLife Extension,	Conduct workshops on soil testing, ways to determine	2025-	
TWRI, Regional	nutrients application amounts, and water resource	2034	
Entities, HOAs,	management		~\$20,000
golf courses,			
Cities, Counties,			
Landowners, Golf	Conduct soil tests before applying fertilizer and	2025-	~\$12/test
Courses, Cities	watering regimes	2034	<i><i><i>q</i>12/(CSC)</i></i>
Cities, counties,	Identify and install GI BMPs as funding becomes	2025-	~\$6-
property owners,	available	2034	\$45/sqft
contractors			
Estimated Load Reduction			
Load reductions f	rom this management measure were not quantified thou	gh, if behavi	ors change,
they will reduce I	oads. No load reductions for nutrients currently exist, the	ough a reduc	tion will be
beneficial to wat	er quality and stream health as TKN and nitrate are above	e screening l	evels and a
	concern.		
Effectiveness	Moderate: Installation of GI BMPs can reduce bacteria	and nutrient	loadings but
	is dependent on the design, site, and maintenance of th	ne BMP. Add	itionally,
	extra time and effort involved may hinder implementat	ion.	
Certainty	Low: Anticipating changes in landowner behavior due to	o education	and outreach
	is difficult.		
Commitment	Moderate: Many stakeholders indicate that soil testing	is necessary	however,
	administration may be difficult in all the areas. The issu	e is not a hig	h priority

	and commitment of limited resources will likely remain low.
Needs	Moderate: Some financial resources will be required to develop educational
	materials in languages other than English. Information could be incorporated
	into ongoing watershed related educational and outreach efforts.

Management Measure 8: Promote adaptive urban flood management

Urban flooding occurs when a greater portion of the land is made up of impervious surfaces such as concrete and buildings, causing rainwater to travel across the ground faster and quickly accumulate. This can also be exacerbated by erosion which accumulates sediment and debris creating blockages in stormwater infrastructure. Increasing the surface area of green spaces can offset impervious surface areas and reduce stormwater runoff. Though no direct measures were calculated for the bacteria, these impacts do contribute to bacteria and nutrient loading in the watershed and BMPs can reduce loadings. Promoting the development of local city Adaptive Flood Management Plans that incorporate aspects of water quality management can improve long-term management of water resources. By developing longterm adaptive management plans city municipalities and utility districts can identify and outline measures to best manage urban stormwater infrastructure to reduce flooding and its water quality impacts triggered by increasing precipitation intensity and drought events over the coming decades. This should include guidance and implementation strategy on the number, location, and type of stormwater BMPs that not only mitigate flooding but also treat stormwater runoff pollution. Examples would include vegetated bioswales, stormwater tree trenches, and other blue and green infrastructure. Other recommendations include converting existing developed land to green spaces and implementing erosion control measures throughout the watershed. Table 5-8 summarizes management measures for urban adaptive flood management.

Table 5-8 Management Measure 8: Promote adaptive urban flood management.

Pollutant Source: Urban Flooding	and Sediment
---	--------------

Problem: Intense precipitation events in urban areas lead to flooding intensified by erosion sediment buildup increase bacteria and nutrient loading

Objectives: 1. Develop collaborative flood resiliency/adaptation plans that incorporate water quality concerns. 2. Identify and install GI BMPs in coordination with cities, counties, and municipalities. 3. Promote and expand education of flooding impacts on water quality and BMPs, 4. Monitor the effectiveness of BMPs.

Location: Entire watershed

Critical Areas: Urban areas with minimal green space and construction areas

Goal: Reduce urban flooding throughout the watershed

Description: Developing and implementing collaborative adaptive flood management plans that incorporate water quality concerns with holistic resource management strategies. Install and promote GI BMPs to mitigate flooding and erosion issues in identified concern areas. Promote and expand education of urban flooding impacts on water quality to residents and stakeholders. These practices can also be used to mitigate the occurrence of illicit discharge of wastewater.

Implementation Strategy							
Participants	Recommendations	Period	Costs				
AgriLife Extension,	Coordinate with stakeholders to develop local	2025-2034					
TWRI, City	adaptive flood management plans that incorporate						
Planners, Regional	water quality concerns		NI / A				
Entities,			N/A				
Watershed							
Coordinators							

Cities, counties, Regional Entities, contractors Cities, Counties, Regional Entities	Identify and install GI BMPs as funding becomes available Perform routine stormwater infrastructure assessments for identification of illicit discharges, proper storm drain management, and identify erosion	2025-2034 2025-2034	~\$6- \$45/sqft \$16,000			
	and prevent erosion					
	Estimated Load Reduction					
Installation of stormwater GI BMPs that reduce runoff or treat bacteria will result in direct reductions in bacteria loading. Potential load reductions were not calculated because the size, type, and location of projects installed will determine the potential load reductions and these have not yet been identified						
Effectiveness	Effectiveness Moderate to High: The effectiveness of GI BMPs at reducing bacteria and nutrient loadings is dependent on the design, site, and maintenance of the BMP Developing long term planning strategies can reduce loading but it depends on adoption					
Certainty	Certainty Moderate: Adoption of adaptive flood plans and installation of GI BMPs requires sustained commitment from city officials or property owners.					
Commitment	Moderate to High: Urban stormwater management is a regional entities.	priority for cit	ies and			
Needs	High: Support in the form of financial, technical, and ed needed to identify the best application of and adoption, adaptive flood management planning and related GI sol	ucational reso /implementati utions.	urces is on of			

Table 5-9 Summary of expected load reductions.

Management Measure	Summarized E. coli Load Reduction
Pet waste management	1.39668E+16
Feral cat population management	1.62008E+15
Agricultural management	3.06993E+13
Total reduction	1.56176E+16
Total reduction needed*	8.1753E+15

*Defined in CH 4

Expected Loading Reductions

Reducing *E. coli* loads across the watershed and the amount of *E. coli* in the river is the goal of these management measures. The total estimated reduction from the management measures with calculated load reductions (2, 3, and 4) would reduce the annual load by 1.56E+16 cfu. Based on the LDC analyses, a combination of the management measures would more than reduce yearly *E. coli* loads by the necessary 8.18E+15 cfu. The greatest expected load reductions will result from the measures recommended for pet waste, feral cats, and livestock, respectively (Table 5-9). The stormwater management measures recommended will result in load reductions, depending on the number, size and type of GI BMPs designed and installed the load reductions could be significant while addressing the high flow events that occur which can be challenging for many of the other suggested management measures. The other recommendations, such as education and outreach, will result in load reductions from changes in people's behavior but are not easily quantified. Applying all these management

measures can help meet the *E. coli* water quality standards and reduce nitrogen levels in the Rowlett Creek watershed.

Table 5-10 Management measures summary.

		Estimated Unit	Implementation goals (years after implementation begins)						r			
Management Measure	Participants	Cost	0-1	2-3	4-5	6-7	8-9	10	Total Cost			
Urban Stormwater Runoff												
Identify and install green infrastructure BMPs	Cities, counties, property owners, contractors	~\$6-\$45/sqft	As many as possible					As many as possible				Varies
Riparian, wetland, and stream restoration	Texas A&M Forest Service, cities, counties, TWRI	~\$500,000/project	As needed						Varies			
Deliver education and outreach on stormwater BMPs	TWRI, AgriLife Extension, property owners, cities, counties, regional entities	N/A	As many as possible						N/A			
Proper Pet Waste Disposal	1		1									
Develop and deliver education and outreach resources and materials	Cities, counties, property owners, HOAs, ISDs	\$5,000/year	1	2	2	2	2	1	\$50,000			
Maintenance supplies for at least 50 pet waste stations	Cities, counties, property owners, HOAs	\$85/station	5	10	10	10	10	5	\$4,250			
Install 25 pet waste stations	Cities, counties, property owners, HOAs	\$500/station	5	5	5	5	5		\$12,500			
Identify and install GI BMPs	Cities, counties, HOAs	~\$6-\$45/sqft		As	many a	is possi	ble		varies			
Pet waste disposal ordinances and by-laws	Cities, counties, HOAs	N/A			As ne	eded			N/A			
Feral Cat Management												
Develop and deliver educational resources and outreach	Cities, property owners, HOAs, local rescues	\$5,000/year	1	2	2	2	2	1	\$50,000			
Feral cat and pet sterilization for at least 400 cats	Local vet clinics, local rescues, cities, counties, residents	\$50/cat	40	80	80	80	80	40	\$20,000			
Provide cat trapping supplies for 40 traps	Local vet clinics, local rescues, cities, counties	\$120/trap	10	20	10				\$4,800			
Identify and install GI BMPs	Cities, counties, HOAs	~\$6-\$45/sqft	As many as possible						varies			

WQMPs and Conservation Plans									
Provide financial assistance for 5 WQMPs/CPs	Producers, NRCS, TSSWCB, SWCDs	\$15,000/plan	1	2	2				\$75,000
Deliver education and outreach workshops	AgriLife Extension, SWCDs, cities, hobby farmers, stable managers	N/A	As needed						N/A
Urban NPS Pollution Education									
Develop and deliver educational and outreach materials	AgriLife Extension, TWRI, Counties, Watershed Coordinators	N/A			As ne	eded			N/A
Deliver K-12 educator workshops	AgriLife Extension, TWRI, ISDs, Watershed Coordinators	\$5,000/event		2	2				~\$25,000
Reduce Illegal Dumping and Litter									•
Develop and deliver educational and outreach materials	AgriLife Extension, cities, counties, nonprofits	\$500/year	1	2	2	2	2	1	~\$5,000
Install and maintain at least 15 trash receptacles and enforce ordinances	Cities, counties, municipalities, HOAs	\$500- \$1,000/receptacle			5	5	5		\$7,500- \$15,000
Coordinate cleanup events	Cities, counties, nonprofits, HOAs, residents, regional entities	N/A	1	2	2	2	2	1	N/A
Urban Lawn Care Management		• •							
Develop and deliver education and outreach resources	AgriLife Extension, TWRI, Regional Entities, HOAs	N/A			As ne	eded			N/A
Soil testing workshops	AgriLife Extension, TWRI, Regional Entities, HOAs, golf courses, Cities, Counties,	~\$5,000/event		1	1	1	1		~\$20,000
Conduct soil testing	Landowners, Golf Courses, Cities	~\$12/test		•	As ne	eded	•	•	Varies

Identify and install GI BMPs	Cities, counties, property owners, contractors	~\$6-\$45/sqft		varies					
Adaptive Urban Flood Management									
Develop local adaptive flood management plans that incorporate water quality	AgriLife Extension, TWRI, City Planners, Regional Entities, Watershed Coordinators	N/A	1					N/A	
Identify and install GI BMPs	Cities, counties, Regional Entities, contractors	~\$6-\$45/sqft		varies					
Stormwater infrastructure assessments	Cities, Counties, Regional Entities	\$800	2	4	4	4	4	2	\$16,000