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sented.
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• NAFTA corridor-related health risks are
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likely to degrade sustainability through
2050.
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tial to mitigate the social-ecological
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Inequality in access to ecosystem services is inextricably linked with environmental justice in socially heteroge-
neous urban settings. Historically, San Antonio has been the gateway to Mexico and is strategically located along
the North American Free Trade Agreement (NAFTA) corridor. It is also characterized by some of themost distinct
residential segregation amongU.S. cities. However, little is understood about theways inwhich historically insti-
tutionalized residential segregation initiated by theHomeOwners' Loan Corporation (HOLC) and NAFTA have af-
fected socio-ecological outcomes. Here, this paper presents a novel empirical study of racial residential
segregation. The study utilizes quantitative and spatially explicit estimates of regulating ecosystem services
and biodiversity, and links the supply of ecosystem services to the distribution of humanwell-beingwithin a het-
erogeneous social-ecological system. Specifically, the paper employed 1930s HOLC redlining maps and applied
the ceteris paribus approach for racial concentrations to reflect a historical legacy and path dependence by insti-
tutional inertia. The results point to the social-ecological divide in that Hispanic and African Americanminorities
derive fewer ecosystem benefits and face greater health risks and socio-economic disadvantages (p b 0.01). No-
tably, NAFTA corridor-related health risks are the most significant for the Hispanic population (p b 0.01). These
patterns are likely to persist andmay be amplified by 2050 (adjusted R2=0.646). The findings highlight that in-
stitutional transformations are essential for the greater social-ecological equity in the San Antonio region under
NAFTA and, potentially, new United States-Mexico-Canada Agreement. Additionally, by assessing the EJ
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implications of spatially heterogeneous distribution of ecosystem services supply, the paper provides methodol-
ogy that enhances science-based planning and better environmental decision-making to avoid ormitigate social-
ecological divides in rapidly urbanizing regions both in the U.S. and around the world.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

Urban ecosystem services, recognized as ecological infrastructure for
humanwell-being, provide not only a variety of benefits but are also char-
acterized by social disparities due to variations in the delivery of these
benefits and external costs to different neighborhoods and communities
(Barnaud et al., 2018; Schwarz et al., 2015;Wolch et al., 2014). In general,
the extensive ecological footprints of cities interact with the delivery of
ecosystem services in dynamic and complex ways (Alberti et al., 2003)
because of economic externalities (Fisher et al., 2009), uneven social dis-
tribution of benefits (Ernstson, 2013), and collective action for institu-
tional design (Farley, 2012; Muradian and Cardenas, 2015; Ostrom,
2008). Thus, access to ecosystem services in urban neighborhoods and
communities are inherently linked with environmental justice (EJ) in so-
cially heterogeneous urban settings (Jephcote and Chen, 2012; Schwarz
et al., 2015; Watkins and Gerrish, 2018).

Recent ecosystem services valuation studies have recognized the
linkage between the supply of these services and EJ to improve the
multi-layered dimensions of sustainability, including urban resilience,
quality of life, public health, and hazard reduction in social-ecological
systems (SES) (Aragão et al., 2016; Costanza et al., 2017; UN, 2015;
WHO, 2017). Also, the valuation should consider the consequences of
changes in social and ecological factors, and their feedbacks on social-
ecological processes (Daw et al., 2011; Jacobs et al., 2016; Syrbe and
Walz, 2012;Wolff et al., 2015). In this context, the concept of EJ is signif-
icantly tied with overall social-ecological resilience and sustainability in
increasingly interconnected urbanizing landscapes (Agyeman et al.,
2016; Fischer et al., 2015).

Despite the growing emphasis on integrating ecosystem services
and EJ, most studies have focused on theoretical and fragmented analy-
ses rather than on empirical, institutional, and integrative assessments
(Bennett et al., 2015; Liu et al., 2013; Ostrom, 2009). Little research
has been conducted to understand the effect of social-ecological pro-
cesses on EJ (Haase et al., 2014; Jennings et al., 2016; Marshall and
Gonzalez-Meler, 2016), which represents a critical knowledge gap
(Güneralp and Seto, 2013; IPBES, 2018; Norman et al., 2012; SCBD,
2010).

This paper addresses that knowledge gap by reporting an integrative
empirical EJ assessment of the supply of ecosystem services as well as
air pollution-related public health risks along a social-ecological divide
(SED) in Bexar County, Texas. SED refers to the disparities in quality of
life driven by asymmetries in the supply of ecosystem services, which
enhance human well-being, and economic disservices, that diminish
human well-being in terms of socio-economic factors. Specifically, the
paper focuses on the linkage between institutionalized patterns of
residential segregation and EJ.

This aligns with sustainability concerns in the San Antonio region of
Texas. First, with an intensive carbon-based economy and expanding
gray infrastructure (Moran et al., 2018; Seto et al., 2016), Texas ranks
first among the U.S. states in carbon dioxide (CO2) emissions and eighth
in per capita energy use by the transportation sector (USEIA, 2016).
Second, detrimental effects of particulate matter (PM) on vegetation
and human health have reportedly been increasing along the NAFTA cor-
ridor (CEC, 2010). Third, racial residential segregation has historically
been significant in SanAntonio (HOLC, 1935;Walter et al., 2017); further-
more, disparities of socio-economic and health outcomes in the region
have been aggravated by the recent rapid economic development and ur-
banization (Chetty et al., 2016; Fry and Taylor, 2012). Therefore, the paper
addresses the following three questions: (1) What are the institutional-
ized patterns of racial residential segregation and the implications for EJ
and sustainability across the San Antonio region? (2) How do socio-
environmental factors that determine the spatial distribution of urban
ecosystem services explain the social-ecological disparities within the re-
gion? (3) What are the likely future ramifications through 2050 of
persisting racial residential segregation patterns and NAFTA?

2. Methods

2.1. Study area

The study area is Bexar County, which includes the City of San
Antonio, the seventh most populous and the third fastest growing city
in the U.S. (Fig. 1; USCB, 2015, 2017). Historically, San Antonio has
been the gateway to Mexico as an important commercial center
(HOLC, 1935; Huh, 2018). The city is located in south Texas between
the Edwards Plateau and the Gulf Coastal Plain and intersects in the
north with the environmentally sensitive Edwards aquifer recharge
zone (EARZ) (SAWS, 2014). This region is also referred to as ‘Flash
Flood Alley’ due to its location along the Balcones Escarpment, which
is characterized by steep slopes and periodic flash flooding (Ashley
and Ashley, 2008; TWRI, 2016). It is also strategically located along
the NAFTA corridor that connects Canada toMexico via Interstate High-
way (IH)-35 and it functions as amajor transportation hub for commer-
cial traffic within this corridor (CEC, 2010; TTI, 2007; TxDOT, 2007,
2013). Furthermore, San Antonio is one of the most residentially
segregated cities in the U.S. with spatially discrete racial concentrations
(Fry and Taylor, 2012) and diverging health disparities with shorter life
expectancy for low income groups (Chetty et al., 2016).

TIGER/Line® shapefiles for 2010 census tracts (USCB, 2010a) were
used as the spatial unit of analysis. The unit also represents theminimal
scale at which ambient diesel PM and health risks are provided by the
2011 National Air Toxics Assessment (NATA) (USEPA, 2015). Bexar
County consists of 366 census tracts with approximately 60% being
composed of Hispanics on a county scale in 2010 (USCB, 2010b). Five
census tracts were excluded due to a lack of data and the remaining
361 census tracts were used for the analysis (Appendix A.1.2). These
census tracts and the racial proportionality in each tract were applied
to divide Bexar County into 256 Hispanic, 4 African American, and 101
White dominated sub-areas (Fig. 1).

2.2. Institutional processes for historical legacy and path dependence of
racial segregation

Two types of maps were used to determine historical legacy and path
dependence of racial residential segregation: (a) racial concentrationmap
and (b) residential security map by the Home Owners' Loan Corporation
(HOLC) (HOLC, 1935). The HOLC served as a financial institution and
resulted in discriminatory racial housing policies and practices for the
mortgage redlining and urban racial segregation in 1930s (Crossney and
Bartelt, 2005; Grove et al., 2018). In this paper institutions refer to the
informal (e.g., traditional social norms, cultural customs), and formal
(e.g., deeds, laws) rules that structure socio-economic, political, and
ecological interactions (Muradian and Cardenas, 2015; North, 1991;
Ostrom, 2008). The HOLC redlining maps of San Antonio indicate that
Mexican populations were confined to the west and south, African
American populations to the east, and areas north of San Antonio were



Fig. 1. Three racially dominant sub-areas, 1935 HOLC redlining map boundary, and the census tracts intersecting with IH-35 corridor in Bexar County.
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reserved for theWhite population (Fig. 2(a)), and also that racial concen-
trations are largely congruent with the grades of urbanization and secu-
rity (Fig. 2(b)).

HOLC redlining maps created in 1935 and residential hotspots
in 2010 were compared to assess the persistence of the residential seg-
regation patterns; based on geographic inertia and the limited social
mobility of some lower income racial groupswe assumed that historical
(a) Racial concentration map            

Fig. 2. Home Owners' Loan Corporation (HOLC
patterns will likely persist to 2050. Local Indicators of Spatial Associa-
tion (LISA) (Anselin, 1995) was employed to identify hotspots of racial
concentrations and patterns of residential segregation in 2010. Accord-
ing to Texas State Data Center (2014), Texas population is projected to
double by 2050 (Potter and Hoque, 2014). To estimate the future popu-
lation in Bexar County, one half migration scenario and population data
were acquired from the Texas Demographic Center (2018). Specifically,
         (b) Residential security map 

) (1935) redlining maps of San Antonio.
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it is estimated that in 2050 Bexar County will have a total population of
2,656,573with an overall 10% increase in the proportion of theHispanic
population compared to 2010.

To estimate the distribution of population, the ceteris paribus princi-
ple (i.e., all other things being equal) was applied, which is widely used
in the valuation of ecosystem services to simplify the estimation of
ecosystem-service values within a partial equilibrium framework
(Norgaard, 2010) as well as for regression analysis (Wooldrige, 2013).
The principle indicates that institutional inertia characterized by persis-
tent racial concentration policies and practices, will have legacy effects
on future outcomes (Crossney and Bartelt, 2005; Grove et al., 2018;
Liu et al., 2007). Specifically, with explanatory variables being constant
except the change in the proportion of Hispanic population, by 2050
this will lead to an overall 10% increase of Hispanic population within
the same Hispanic dominant census tracts (n = 256).

2.3. Quantification of urban ecosystem services and extraction of socio-
environmental variables

Mean Normalized Difference Vegetation Index (NDVI) was used
to estimate the provision of ecosystem services (carbon storage
and biodiversity) in a rapidly urbanizing area. The rationale for this
is that NDVI is positively correlated with green biomass that in turn
is positively correlated with photosynthetic carbon sequestration
and species diversity (Casey et al., 2016; St-Louis et al., 2006); it
can be used as an empirical indicator of socio-ecological conditions
(Markevych et al., 2014; Wolfe and Mennis, 2012); and it is easily
derived from remotely sensed data (Rouse et al., 1974; Yi, 2017;
Yi et al., 2017). Cloud-free Standard Terrain Correction Thematic
Mapper (TM) Landsat 5 images from December 2010 were utilized
to correspond with 2010 Census data (Yi, 2017; Yi et al., 2017,
2018; https://earthexplorer.usgs.gov/). NDVI is computed from the
ratio of wavelengths of reflected invisible near-infrared (NIR) band
(0.76–0.90 μm) and absorbed visible red bands (0.63–0.69 μm) at a
30-m spatial resolution (Eq. (1)) (Jensen, 2005; USGS, 2018).

NDVI ¼ ρnir−ρred

ρnir þ ρred
ð1Þ
Table 1
Socio-environmental variables in four categories and data description.a

Variable (abbreviation) in
each category

Data description

(1) Ecosystem services
Normalized Difference Vegetation Index (NDVI)b Proxy indicator of urban ec
Biodiversity (BIO) Index of habitat quality
Carbon storage (CS) Sum of four terrestrial carb

(2) Race and demographics
Hispanic proportion (HP)c Proportion of Hispanic pop
African American proportion (AA)c Proportion of African Amer
White proportion (WP) Proportion of White popula
Proportion of children under 15 years (CP) Proportion of children unde
Proportion of seniors 65 years and older (SP) Proportion of seniors of 65

(3) Socio-economics
Median household income (MI)c Median income for a house
Uninsured rate for health insurance coverage (UI) Proportion of uninsured he
Poverty rate (PR) Proportion under the feder
Unemployment rate (UR) Proportion of unemployme
Supplemental Nutrition Assistance Program rate (FR) Proportion of federal food s
Proportion of bachelor's degree or higher (EA) Level of educational attainm

(4) Air pollutant and health risks
Ambient diesel particulate matter (PM) (DPM)c Concentration of ambient d
Diesel PM hazard index (DHI) Incidence of non-cancer die
Respiratory hazard index (RHI) Incidence of respiratory haz
Cancer risk index (CRI) Incidence of cancer risk fro

a Each variable is used for Shapiro-Wilk normality test, non-parametric Spearman's correlat
b Dependent variable for Ordinary Least Squares (OLS) and Geographically Weighted Regres
c Independent variable for OLS and GWR.
Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST)
was employed to quantify biodiversity and carbon storage (Sharp
et al., 2016; Yi, 2017; Yi et al., 2018). The ecological production function
method (EPFM) used in InVEST empirically quantifies habitat quality for
biodiversity and terrestrial ecosystem services (Tallis and Polasky,
2009; Polasky et al., 2011). The model parameters were previously cal-
ibrated or validated using empirical data (COLE, 2016; IPCC, 2006;
Polasky et al., 2011). In addition, 2010 Census and 2011 NATA data
were used to extract specific socio-environmental information of each
census tract for statistical analyses (USCB, 2010b; USCB, 2014; USEPA,
2015).
2.4. Analyses of the spatial associations between NDVI and socio-
environmental variables

All the variables were grouped into four categories (Table 1).
Quantile-Quantile (Q-Q) plots and Shapiro-Wilk normality test were
conducted to determine whether the data for the variables presented
in Table 1 meet the normality assumption. The results of these tests in-
dicated that the data were not normally distributed and exhibited non-
linear patterns for non-parametric statistical tests (p b 0.05). A correla-
tion matrix and Spearman's ρ were reviewed to derive a regression
model across the 361 census tracts. Kruskal-Wallis test was conducted
to identify statistically-significant differences of socio-environmental
variables among the three racially dominant sub-areas (Kruskal and
Wallis, 1952), and the Mann-Whitney U test for post-hoc comparisons
of differences between pairs of geographic areas.

It was further examined whether communities and neighborhoods
within census tracts that intersect with the NAFTA corridor exhibit dif-
ferent socio-ecological outcomes than those that are outside of the cor-
ridor. For this purpose, we used the container approach (McEntee and
Ogneva-Himmelberger, 2008; Talen and Anselin, 1998) to divide
Bexar County into two sub-areas, the first consisting of 36 census tracts
that intersect with the NAFTA corridor and the second consisting of 325
census tracts located to the east and west of the corridor. We then
applied the Mann-Whitney U test to examine the socio-ecological dis-
parities of census tracts located within or outside of the NAFTA corridor
(Mann and Whitney, 1947).
Source

osystem services (UES) EarthExplorer (USGS, 2010), Yi (2017), Yi et al. (2017)
InVEST (Sharp et al., 2016), Yi (2017), Yi et al. (2018)

on pools InVEST (Sharp et al., 2016), Yi (2017), Yi et al. (2018)

ulation American Community Survey (USCB, 2010a, 2010b)
ican population American Community Survey (USCB, 2010a, 2010b)
tion American Community Survey (USCB, 2010a, 2010b)
r 15 years American Community Survey (USCB, 2010a, 2010b)
years and over American Community Survey (USCB, 2010a, 2010b)

hold American Community Survey (USCB, 2010a, 2010b)
alth coverage American Community Survey (USCB, 2014)
al poverty level American Community Survey (USCB, 2010a, 2010b)
nt American Community Survey (USCB, 2010a, 2010b)
tamps recipients American Community Survey (USCB, 2010a, 2010b)
ent American Community Survey (USCB, 2010a, 2010b)

iesel PM National Air Toxics Assessment (USEPA, 2015)
sel PM hazard National Air Toxics Assessment (USEPA, 2015)
ard from air toxics National Air Toxics Assessment (USEPA, 2015)
m air toxics National Air Toxics Assessment (USEPA, 2015)

ion analysis, Kruskal-Wallis test, and Mann-Whitney U test.
sion (GWR).

https://earthexplorer.usgs.gov/


Table 2
Descriptive statistics of socio-environmental variables (2010, N = 361).

Variable (unit) in each category
(color)

Minimum Maximum Mean Std.
deviation

(1) Ecosystem services (green)
Normalized Difference Vegetation
Index (unitless)

0.183 0.573 0.359 0.074

Biodiversity (score·ha−1) 2.948 9.386 5.827 1.570
Carbon storage (Mg C·ha−1) 22.518 112.286 51.942 20.882

(2) Race and demographics (yellow)
Hispanic proportion (%) 7.800 98.000 59.620 23.816
Hispanic proportion in 2050 (%)a 7.800 100.000 70.970 27.700
African American proportion (%) 0.200 62.900 7.354 8.587
White proportion (%) 1.400 81.900 29.660 20.968
Proportion of children under
15 years (%)

2.900 39.200 22.534 5.386

Proportion of seniors 65 years and
older (%)

0.000 37.800 10.691 5.136

(3) Socio-economics (red)
Median household income (US$) 11,019 180,760 51,370 27,578
Uninsured rate for health insurance
coverage (%)

2.600 44.700 19.530 8.970

Poverty rate (%) 0.000 68.900 14.526 12.036
Unemployment rate (%) 0.000 30.700 7.405 4.467
Supplemental Nutrition Assistance
Program rate (%)

0.000 55.900 12.390 10.824

Proportion of bachelor's degree or
higher (%)

0.000 79.200 24.641 19.580

(4) Air pollutant and health risks
(gray)
Ambient diesel particulate matter
(PM) (μg·m−3)

0.255 2.638 0.811 0.357

Diesel PM hazard index
(incidence·million−1)

0.027 0.267 0.086 0.036

Respiratory hazard index
(incidence·million−1)

1.010 6.177 1.751 0.468

Cancer risk index
(incidence·million−1)

32.990 77.347 41.837 4.602

a Hispanic proportion in 2050 is based on the one half migration scenario from Texas
State Data Center (2014).
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Exploratory spatial data analysis (ESDA)wasused to examine spatial
autocorrelation (Tobler, 1970) and to identify the hotspots or cold spots
using the global and local Moran's I (Anselin et al., 1995). Also, stepwise
regression analysis was employed to develop the ordinary least squares
(OLS) model (Eq. (2)). Through the use of the variance inflation factor
(VIF) multicollinearity was identified among the explanatory variables
and the least number of statistically significant explanatory factors
was determined; VIF N7.5 indicated redundancy of the explanatory var-
iable in the regression analysis (ESRI, 2017).

yi ¼ β0 þ
Xm

k¼1

βkxik þ εi ð2Þ

where yi is the dependent variable at location i, β0 is the intercept pa-
rameter, βk is the global regression coefficient for the kth explanatory
variable, xik is the value of the kth explanatory variable, and εi is the ran-
dom error. Four explanatory variables for the OLS were selected to ex-
amine the associations with the NDVI as follows: 1) proportion of
Hispanic population (%); 2) proportion of African-American population
(%); 3) median household income (US$); and 4) ambient diesel partic-
ulate matter (PM) (μg/m3) at a census tract scale.

Due to theOLS assumption that the relationship between dependent
and independent variables is constant, OLS regressionmodels tend to be
spatially auto-correlated and inhibit characterization of spatial non-
stationarity or heterogeneity (Mennis, 2006). On the other hand, Geo-
graphically Weighted Regression (GWR) is a spatial regression method
that accounts for varying local relationships among non-stationary var-
iables, such as ecosystem services, socio-demographic factors, and envi-
ronmental characteristics (Fotheringham et al., 1998, 2002) (Eq. (3)).

yi ¼ β0 ui; við Þ þ
Xm

k¼1

βk ui; við Þxik þ εi ð3Þ

where (ui,vi) is the coordinates and βk(ui,vi) is the continuous function
at location i (i=1,2, … ,n). Thus, GWR indicates that spatial variations
can be measured in a spatially explicit way (Mennis, 2006; Ogneva-
Himmelberger et al., 2009). Both OLS and GWR were applied using
the same variables for 2010 and 2050, respectively and the local varia-
tions of socio-environmental variables were examined. Akaike's Infor-
mation Criterion (AIC) was used to measure the goodness of fit with
Gaussian kernel function to define the optimal bandwidth of local rela-
tionships. Geospatial and statistical analyses were conducted using
ArcGIS® 10.4 (ESRI, 2016) and IBM SPSS® Statistics 24.0 (IBM, 2016).

3. Results

3.1. Spatial distribution of socio-environmental variables

Descriptive statistics of 18 socio-environmental variables are pre-
sented in Table 2 and the quantile classification maps illustrate the spa-
tial distribution of each variable in Fig. 3 (ESRI, 2018). In the category of
ecosystem services, NDVI values range from 0.18 to 0.57 with higher
values to the north side of Bexar County (Fig. 3(a)), while biodiversity
values range from 2.94 to 9.38 score ha−1 with higher values in subur-
ban areas (Fig. 3(b)), and carbon storage values range from 22.51 to
112.28 Mg C ha−1 with similar distribution patterns as NDVI with
higher values in the north (Fig. 3(c)).

In the category of race and demographics, the proportion of His-
panics ranges from 7.8% to 98.0% and predominates in the south and
west of the city (Fig. 3(d)) while that of African-Americans ranges
from 0.2% to 62.9% and is predominantly located in the east (Fig. 3
(e)). By contrast, the proportion of Whites ranges from 1.4% to 81.9%
primarily in north (Fig. 3(f)). The proportion of children under
15 years ranges from2.9% to 39.2%with higher valuesmainly in theHis-
panic dominant areas, while the proportion of seniors 65 years and
older ranges from 0.0% to 37.8%without any specific areas of concentra-
tion (Fig. 3(g), (h)).

In the category of socio-economics, median household income
ranges from $11,019 to $180,760 per annum with higher values in the
White dominant north side of the city (Fig. 3(i)). On the other hand,
uninsured rate for health insurance coverage ranges from 2.6% to
44.7% with higher values to the Hispanic dominant south and west
and in the urban center (Fig. 3(j)). Poverty rate ranges from 0% to
68.9% and Supplemental Nutrition Assistance Program (SNAP) rate
(i.e., proportion of food stamps recipients) ranges from 0% to 55.9%;
both are clustered in the urban center and Hispanic and African
American dominant areas (Fig. 3(k), (m)). Similarly, unemployment
ranges from 0.0% to 30.7% with higher values occurring in minority
communities (Fig. 3(l)). By contrast, educational attainment reflected
by proportion of college education ranges from 0.0% to 79.2% with
higher values in the northern areas (Fig. 3(n)). In the category of air pol-
lutant and health risks, ambient diesel particulate matter (PM) and
health risks from air toxics are all centered in the inner city of San
Antonio. Ambient diesel PM values range from 0.25 to 2.63 μg·m−3,
while diesel PM hazard index ranges from 0.02 to 0.26, respiratory haz-
ard index from 1.01 to 6.17, and cancer risks index from air toxics from
32.99 to 77.34 incidence per million, (Fig. 3(o)–(r)).

3.2. Non-parametric Spearman's correlation analysis

The correlation matrix for the degree of correlation among all the
socio-environmental variables in 2010 is provided in Table 3. Similar
correlation patterns exist among the variables within each category.
For example, carbon storage (CS) and biodiversity (BIO) are the
positively correlated with NDVI (p b 0.01). Hispanic proportion (HP) is
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negatively correlatedwith NDVI, alsowith biodiversity and carbon stor-
age (p b 0.01), while African American proportion (AA) is similarly neg-
atively correlated with NDVI (p b 0.01) but not with biodiversity and
carbon storage. By contrast, White proportion (WP) is positively corre-
lated with NDVI, biodiversity, carbon storage, median household in-
come, and advanced education (p b 0.01).

In terms of socio-economic variables, Hispanic proportion is
negatively correlated with median household income (MI) and
bachelor's degree of higher advanced education (EA) but positively cor-
relatedwith poverty level (PR), unemployment rate (UR) and SNAP rate
(FR) (p b 0.01). For the White proportion, the correlations are opposite
for all five socio-economic variables (p b 0.01). Diametrically opposed
positive and negative correlations also exist for Hispanic and White
proportions, respectively, with respect to ambient diesel particulate
matter (DPM), diesel respiratory hazard index (DHI), respiratory
hazard index (RHI), and cancer risk index (CRI) (p b 0.01). For
the African American proportion, there are no consistent patterns
with respect to any of these variables. In terms of environmental
(a) NDVI (unitless)            (b) Biodiversity (score

(d) Hispanic proportion (%)        (e) African American p

(g) Proportion of children under 15 years (%) (h) Proportion
income (US$) 

Fig. 3. Spatial distribution of socio-environm
factors, ambient diesel particulate matter is negatively correlated with
NDVI (p b 0.01), while diesel respiratory hazard index, respiratory haz-
ard index, and cancer risk index are all positively correlated with the
ambient diesel particulate matter (p b 0.01). These results indicate a
high degree of correlation and, therefore, redundancy among variables
and support stepwise regression analysis to derive a parsimonious
model.

3.3. Non-parametric Kruskal-Wallis test for three racially dominant sub-
areas

The results from Kruskal-Wallis test revealed statistically significant
differences (p b 0.01) among the three racially dominant sub-areas in
terms of 14 socio-environmental variables (Table 4). These results con-
firm differences between the racially dominant sub-areas presented in
the previous two sub-sections. Specifically, the Hispanic and African
American dominant sub-areas exhibit lower values than White domi-
nant sub-areas for the supply of beneficial ecosystem service variables
ha-1)          (c) Carbon storage (Mg C ha-1) 

roportion (%)    (f) White proportion (%) 

 of seniors 65 years and older (%) (i) Median household 

ental variables in Bexar County (2010).



(j) Uninsured rate for health insurance (%)  (k) Poverty rate (%)            (l) Unemployment rate (%) 

(m) SNAP rate (%)               (n) Educational attainment (%)        (o) Ambient diesel PM (µg m-³)

(p) Diesel PM hazard index (incidence million-1) (q) Respiratory hazard index (incidence million-1) (r) Cancer risk 
index (incidence million-1) 

Fig. 3 (continued).
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(i.e., regulating ecosystem services, biodiversity and habitat quality),
median household income, and advanced education. By contrast,
they exhibit higher values for uninsured rate for health insurance,
poverty rate, unemployment rate, SNAP rate, ambient diesel particulate
matter, diesel hazard index, respiratory hazards index, and cancer risk
index.

3.4. Non-parametric Mann-Whitney U test inside and outside the NAFTA
corridor

Mann-WhitneyU test determined statistically significant differences
among socio-environmental variables of census tracts located within
the NAFTA corridor and those located outside of the corridor (Fig. 1;
Table 5). The results indicate that NDVI, biodiversity, and carbon storage
were statistically significantly lower in the NAFTA corridor sub-area
(p b 0.01). Importantly, the Hispanic proportion was significantly
higher and the White proportion significantly lowers in the NAFTA
corridor than the non-corridor sub area (p b 0.01). There was also a
greater proportion of people 65 years and older within the NAFTA
corridor subarea (p b 0.1).

Median household income and advanced education were signifi-
cantly lower within the NAFTA corridor (i.e., IH-35) sub-area, whereas
uninsured rate for health insurance coverage, poverty rate, unemploy-
ment rate, and SNAP rate were significantly higher (p b 0.01). All
four variables for air pollution created by diesel particulate matter
and associated health risks were also significantly higher within the
NAFTA corridor sub-area (p b 0.01). Thus, the benefits and burdens of
socio-environmental outcomes relating to the NAFTA corridor are un-
equally distributed among the two racial groups to the disadvantage
of the Hispanic population.

3.5. Exploratory spatial data analysis for local hotspots

Local indicators of spatial association identify clusters of high values,
lowvalues, and spatial outliers (Anselin, 1995). The 2010 racial hotspots
from LISA for Hispanic and African Americanmirror the historical legacy
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of racial residential concentrations of the 1935 HOLC redlining maps.
For example, Hispanic population clusters in the south and west side
of the city, whereas African American population is concentrated in
the east side, respectively (Fig. 4). In the study high-high (HH) cluster
of NDVI (i.e., hotspots in red) is located to the north of Bexar County
and intersects with the hotspots of high median household income
(Fig. 4(a), (b)).

On the other hand, low-low (LL) cluster of NDVI (i.e., cold spots in
blue) is located in the urban center and mostly intersects with the
hotspots of ambient diesel PM, African American, andHispanic commu-
nities (Fig. 4(a)–(e)). Furthermore, based on the ceteris paribus
approach for institutional inertia, the projected concentration of the
Hispanic population in 2050 will reflect the legacy of the 2010 popula-
tion distribution. In other words, the spatial concentration of the
Hispanic population in the south andwest of the city and the related ef-
fects of the heterogeneous distribution of ecosystem services supply,
socio-economic, and air pollution parameters posed by NAFTA will
likely persist through 2050 (Fig. 4(e), (f)).

3.6. OLS and GWR regressions for the spatial associations

Multivariate regression model was formulated after the correlation
matrix and VIF for all social-environmental variables were examined
to detect multicollinearity or strong relationships between variables
(Tables A1, A2). The resulting OLSmodel indicates that explanatory var-
iables are not redundant in the regression equation (i.e., VIF b 2.8)
(Table 6) and multicollinearity does not exist in the best fit prediction
model (Eq. (4)).

NDVIi ¼ β0 þ β1HPi þ β2AAi þ β3MIi þ β4DPMi þ εi ð4Þ

Specifically, the F-ratio indicates that the overall regression model is
a good fit to predict the NDVI and the four independent variables
are statistically significant (F (4, 356) = 117.481, p b 0.05, Adjusted
R2= 0.564) (Table 6, Table A1). In the regression theNDVI is negatively
associatedwith increase of Hispanic (HP) and African American propor-
tion (AA), and ambient diesel particulate matter (DPM). By contrast,
the NDVI is positively associated with increase in median household
income (MI).

On the other hand, the OLS model exhibited spatial autocorrelation
in the residuals (I = 0.073, p b 0.01), indicating that it did not meet
the spatial homogeneity assumption of OLS regression models that in-
corporate spatial variables. The z-score (z = 6.154) indicates that
there is b1% likelihood that the clustered pattern could be the result of
random distribution. In addition, the Koenker (Breusch–Pagan) statistic
indicates that the results are significant either due to non-stationarity or
heteroskedasticity (p b 0.05). However, Jarque-Bera Statistic indicates
that the residual is normally distributed and the OLSmodel is not biased
due to missing key variables (Table A1).

The GWR model detects locally varying associations and indicates
that the spatial autocorrelation in the residuals does not exist (I =
0.013, z = 1.323) and results in an improved adjusted R2 of 0.643 and
Akaike's Information Criterion (AICc) compared to the non-spatial OLS
(Table 6). Condition number also indicates the reliable range of the
model prediction (i.e., b30). Furthermore, the GWR models for 2010
and 2050 provide an effectiveway to investigatewhere there are strong
and weak associations in terms of local R2 maps over time (Fig. 5). The
predicted GWR models in 2050 indicate that similar spatial patterns
will most likely occur across the region for the association between
NDVI and four socio-environmental variables (Tables 6, A3). Moreover,
given the historical trends of deforestation in San Antonio between
1984 and 2010 (Yi, 2017; Yi et al., 2017, 2018) and the combined effect
of amplified residential segregation and decreasing NDVI, it is expected
that minority populations could be further negatively affected through
2050.



Table 4
Kruskal-Wallis test of socio-environmental variables in Hispanic, African American, and White dominated census tracts in Bexar County.

Variable in each category Mean rank
[1] Hispanic
(n = 256)

Mean rank
[2] African American
(n = 4)

Mean rank
[3] White
(n = 101)

χ2 p Mann-Whitney
U test

(1) Ecosystem services
Normalized Difference Vegetation Index (unitless) 146.49 77.00 272.58 109.756 b0.001 1, 2 b 3
Biodiversity (score·ha−1) 145.60 197.00 270.10 103.183 b0.001 1, 2 b 3
Carbon storage (Mg C·ha−1) 141.42 168.50 281.82 131.162 b0.001 1, 2 b 3

(2) Demographics
Proportion of children under 15 years old (%) 201.83 267.38 124.78 42.254 b0.001 1, 2 N 3
Proportion of seniors 65 years and older (%) 176.46 203.38 191.61 1.713 0.435

(3) Socio-economics
Median household income (US$) 141.34 95.25 284.91 139.809 b0.001 1, 2 b 3
Uninsured rate for health insurance coverage (%) 220.65 204.75 79.56 132.605 b0.001 1, 2 N 3
Poverty rate (%) 219.23 239.75 81.78 126.942 b0.001 1, 2 N 3
Unemployment rate (%) 201.70 236.75 103.52 77.559 b0.001 1, 2 N 3
Supplemental Nutrition Assistance Program rate (%) 222.45 260.00 72.80 151.289 b0.001 1, 2 N 3
Proportion of bachelor's degree or higher (%) 137.27 129.13 293.89 164.125 b0.001 1, 2 b 3

(4) Air pollutant and health risks
Ambient diesel particulate matter (PM) (μg·m3) 202.28 238.00 124.81 41.116 b0.001 1, 2 N 3
Diesel PM hazard index (incidence·million−1) 202.73 232.75 123.87 42.353 b0.001 1, 2 N 3
Respiratory hazard index (incidence·million−1) 192.23 234.00 150.24 12.815 0.002 1, 2 N 3
Cancer risk index (incidence·million−1) 198.00 258.75 134.82 28.794 b0.001 1, 2 N 3

1 denotes Hispanic dominant sub-area; 2 denotes African American dominant sub-area; 3 denotes White dominant sub-area.
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The GWRmodels indicate that the NDVI is inversely associated with
Hispanic and African American proportion (Adjusted R2 = 0.643 and
0.646, respectively in Tables 6, A3). The quantile maps of local R2 illus-
trate that the association will likely increase in the north-western side
with a spatially fixed Hispanic population through 2050 despite the
overall 10% population increase in Bexar County (Fig. 5(a), (b)). The re-
sults have advantages over OLS to identify the spatial patterns, com-
pared to the value of global R2 from OLS, which is 0.56 because GWR
takes into account local variations, whereas OLS indicate the homoge-
neous relationships. Notably, the GWR results illustrate the division of
local R2 along theNAFTA corridor, such that south-eastern communities
have lower local R2 (b50%), whereas north-western communities have
higher local R2 (≥50%). Thus, the GWR provides more specific regional
information than theOLS and demonstrates the spatially amplified like-
lihood of environmental injustice through 2050.
Table 5
Mann-Whitney U test of differences in socio-environmental variables between census tracts in

Variable in each category Mean rank
[1] NAFTA corridor
(n = 36)

(1) Ecosystem services
Normalized Difference Vegetation Index (unitless) 82.92
Biodiversity (score·ha−1) 129.50
Carbon storage (Mg C·ha−1) 115.31

(2) Race and demographics
Hispanic proportion (%) 228.39
African American proportion (%) 176.92
White proportion (%) 128.94
Proportion of children under 15 years old (%) 183.46
Proportion of seniors 65 years and older (%) 212.22

(3) Socio-demographics
Median household income (US$) 109.89
Uninsured rate for health insurance coverage 251.01
Poverty rate (%) 240.13
Unemployment rate (%) 245.79
Supplemental Nutrition Assistance Program rate (%) 253.83
Proportion of bachelor's degree or higher (%) 113.93

(4) Air pollutant and health risks
Ambient diesel particulate matter (PM) (μg·m3) 265.17
Respiratory hazard index (incidence·million−1) 234.89
Diesel PM hazard index (incidence·million−1) 262.67
Cancer risk index (incidence·million−1) 229.03

1 denotes sub-areas in the NAFTA corridor and 2 denotes Non-NAFTA corridor area in Bexar C
4. Discussion

Globalization and rapid urbanization are intensifying the need for a
multi-faceted approach to developing a fundamental understanding of
complex social-ecological systems. Such an approach could contribute
to informing strategies and policy alternatives that support future sus-
tainability through the enhanced understanding of the interconnections
between socio-economic and ecological systems that affect future sus-
tainability and equity in diverse human societies (Bowen et al., 2017;
Muradian and Cardenas, 2015; Ostrom, 2009; Paavola and Adger,
2005; Schaefer et al., 2015; Seto et al., 2017; Stafford-Smith et al.,
2017). In the Bexar County study area, the results indicate that residen-
tial segregation is a persistent phenomenon that has led to significant
racial disparities in access to ecosystem services and health and socio-
economic outcomes (Fry and Taylor, 2012; Williams and Collins,
tersecting with the NAFTA corridor and outside of the NAFTA corridor.

Mean rank
[2] Non-corridor
(n = 325)

Mann-Whitney U p Score

191.86 2319.00 b0.001 1 b 2
186.70 3996.00 0.002 1 b 2
188.28 3485.00 b0.001 1 b 2

175.75 4144.00 0.004 1 N 2
181.45 5703.00 0.805
186.77 3976.00 0.002 1 b 2
180.73 5761.50 0.882
177.54 4726.00 0.058 1 N 2

188.88 3290.00 b0.001 1 b 2
173.24 3329.50 b0.001 1 N 2
174.45 3721.00 b0.001 1 N 2
173.82 3517.50 b0.001 1 N 2
172.93 3228.00 b0.001 1 N 2
188.43 3435.50 b0.001 1 b 2

171.68 2820.00 b0.001 1 N 2
175.03 3910.00 b0.001 1 N 2
171.95 2910.00 b0.001 1 N 2
175.68 4121.00 0.004 1 N 2

ounty.



(a) NDVI                 (b) Median household income         (c) Ambient diesel PM  

(d) African American population     (e) Hispanic population              (f) Hispanic population in 2050 

Fig. 4. Local Moran's I cluster and outlier analysis for the NDVI and independent variables. (For interpretation of the references to color in this figure, the reader is referred to the web
version of this article.)
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2001); these findings suggest a strong need for new institutional design
for moving toward sustainability to incorporate the change in the city's
governance structures (Bai et al., 2016). Such a change would include
implementation of inclusive policies and strategies through which
urban residents reform the rules or practices in the urbanizing social-
ecological systems in which they belong (Farley, 2012; Ostrom, 2008).

While numerous studies have focused on the provision of ecosystem
services, relatively little attention has been directed toward the disag-
gregation of benefits in terms of the institutional aspects of unequal so-
cial allocation of the supply of ecosystem services (Daw et al., 2011).
Furthermore, while there are studies on the effects of hazardous air pol-
lutants on biodiversity and ecosystem services (Grantz et al., 2003;
Lovett et al., 2009), due to methodological or empirical challenges for
integrated analyses, few of these have addressed the EJ implications of
economic development-driven spatial disparities in ecosystem services
Table 6
Results of OLS and GWR models based on 2010 data.

OLS

Coefficient Std. coefficient V

Intercept 0.384
Hispanic proportion −0.001 −0.227 2
African American proportion −0.002 −0.213 1
Median household income 1.183 × 10−6 0.441 2
Ambient diesel particulate matter −0.038 −0.183 1
Condition number
Local R-squared
Multiple R-squared 0.569
Adjusted R-squared 0.564
Akaike's Information Criterion (AICc) −1149.067
Moran's I index of standard residual 0.073⁎

z-score (p-value) of global Moran's I 6.154 (b0.001)⁎

⁎ p b 0.01.
and economic disservices (Marshall and Gonzalez-Meler, 2016). The
research presented in this paper addresses that knowledge gap. In
addition, because the methodology illuminates the EJ implications of
disparate relationship among racial groupings in urban spaces and the
delivery of ecosystem services and economic disservices, the findings
are relevant for other urban regions characterized by segregated racial
distribution patterns.

The findings point to persistent ‘social-ecological divide (SED)’ or
disparities among Hispanic and African American minorities and low-
income neighborhoods in Bexar County due to the derivation of fewer
ecosystem services benefits, socio-economic disadvantages and greater
exposure to development-related health risks. The results of spatial
regression models show heterogeneous social-ecological associations
between the NDVI, as an indicator of urban ecosystem services, and
socio-environmental variables, including the proportion of Hispanic
GWR

IF Coef.
Mean

Coef.
minimum

Coef.
maximum

Std.
deviation

0.406 0.248 0.573 0.103
.717 −0.001 −0.002 0.001 0.001
.386 −0.002 −0.006 0.001 0.002
.766 1.288 × 10−6 0.229 × 10−6 2.274 × 10−6 0.637 × 10−6

.257 −0.049 −0.077 −0.005 0.018
23.942 17.894 29.971 3.729
0.554 0.338 0.679 0.068
0.662
0.643
−1215.616
0.013
1.323 (0.185)



Fig. 5. Quantile maps of local R2 in Bexar County for 2010 (a) and 2050 (b).
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and African American residents, median household income, and
ambient diesel PM. Furthermore, the GWR prediction for 2050 suggests
the spatially fixed and reinforced racial inequality in terms of SED will
likely be amplified leading to greater environmental injustice due to
the path dependent and institutionalized residential patterns in the
San Antonio region.

This study links historical institutionalized patterns of residential
segregation to the socio-ecological outcomes and the racial disparities
in the San Antonio region, an urban social-ecological system (Ostrom,
2009) that is strongly tied to economic globalization through NAFTA.
For example, diesel PM is recognized as national pollutant for its
detrimental effects on human health as well as ecosystem conditions
and climate change (Grantz et al., 2003; USEPA, 2015). It has become in-
creasingly recognized that pollution hazardsmay disproportionately af-
fect racial and ethnic minorities and underrepresented communities
(Houston et al., 2004; Oyana et al., 2004; Jephcote and Chen, 2012). In
addition, air quality is affected by international trade as well as local
air pollution (Zhang et al., 2017), which is increasing concerns in the
San Antonio region in terms of ground level Ozone, NOx, and other air
toxics from diesel PM (CEC, 2010; AACOG, 2018). Furthermore, air pol-
lutant emissions from the Eagle Ford shale development south of San
Antonio are predicted to increase ozone concentrations in Bexar County
(Pacsi et al., 2015). Thus, the combined effect of the NAFTA corridor and
the Eagle Ford Shale development since 2011 indicates the serious air
quality concerns for quality of life and EJ issue in the region.

The findings suggest that current trajectory of racial residential seg-
regation will continue to hinder moving toward sustainability in San
Antonio through 2050. The institutional mechanism responsible for
this is exemplified by the spatial and temporal practices and policies
of the HOLC going back almost a century and the NAFTA that has led
to a legacy and path dependence of environmental injustice in San
Antonio. For example, the HOLC redlining maps reveal that the racial
concentrations are congruent with the grades of residential security
and the lending practices in urban areas in the U.S. (Crossney and
Bartelt, 2005; Grove et al., 2018). Likewise, NAFTA or, potentially, new
United States-Mexico-Canada Agreement as an international trade in-
stitution will continue to affect the pathways to urban sustainability
within the San Antonio region (Yi et al., 2018).

The results revealed uneven distribution of ecosystem services in
San Antonio. Predominantly White and wealthier communities are pri-
marily located in the upstream segment of San Antonio near the envi-
ronmentally sensitive Edwards aquifer recharge zone, whereas the
minority communities with lower socio-economic status are located
in the south and west of the city with less favorable socio-ecological
characteristics. Additionally, the results indicate significant intra-
regional disparities along the NAFTA corridor that divides Bexar County
into two sections to the southeast and northwest, in which contempo-
rary ‘new redlining of ecosystem service benefits’ persist. This paper
found that NAFTA corridor-related health risks are significantly greater
in census tracts that intersect with the corridor where Hispanics form
the dominant portion of the population.

Furthermore, as minority neighborhoods are increasingly exposed to
environmental risks and less likely to benefit from ecosystem services
under the expanding NAFTA-related development, these neighborhoods
are more likely to be exposed to further negative social-ecological
outcomes and less likely to benefit from the positive socio-ecological
outcomes in the San Antonio region. Therefore, the environmental
injustice in the regionwill likely become evenmore skewed andwill ag-
gravate the social vulnerability of certain neighborhoods. For example,
the social vulnerability index (USCDC, 2018; https://svi.cdc.gov/)
indicates that downstream residents in the southeast of San Antonio
are more vulnerable to natural hazards and disaster compared to the
upstream residents in northern San Antonio. Notably, the 2010 index in-
dicate thatmore census tracts in south side are exposed to higher overall
vulnerability index compared to the 2000 index.

The findings also indicate a negative correlation between the lack of
health insurance rates and hotspots of ambient diesel PM, which
coincides with the ‘inverse care law’ indicating medical care and health
inequality by market forces (Hart, 1971; Talen, 1998). Likewise, the re-
sults suggest the ‘inverse allocation of ecosystem service benefits’ in
that the distribution of urban ecosystem services is inversely related
to the socio-economic conditions of neighborhoods. These findings
bring attention to inter-generational inequity (Chetty et al., 2014). For
example, children in a northern census tract (1821.01) come from
predominantly White households with $121,809 median income and
that are located away from the NAFTA corridor, compared to an urban
census tract (1708) where children come from predominantly Hispanic
households with $16,078 median income and that are located near
NAFTA corridor.

These two residentially segregated groups of children have consid-
erably different pathways for social mobility due to different socio-
environmental conditions in 2010, which are likely to extend to the
next generation. The results also demonstrated intra-generational
inequity in that seniors 65 years and older tend to be more exposed to
air pollutant-related health risks. These findings suggest, in order for
San Antonio to develop in a sustainable and inclusive manner, it will

https://svi.cdc.gov/
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face great challenges in the next few decades to manage trades-offs be-
tween the short-term economic benefits and long-term external eco-
system costs as well as the polarized delivery of ecosystem services
that is being exacerbated by NAFTA-related rapid urban development.

In this regard, ecosystem service-based institutional transformations
should be first designed to motivate urban neighborhoods to engage in
civic participation or collective action for greater equity at multiple
scales (Ostrom, 2000). Second, sound urban planning policies for
urban green infrastructure is critical in that urban green spaces play
an important role in sustaining biodiversity and ecosystem services, im-
proving air and water quality, mitigating urban heat island effects and
natural disasters, and regulating storm water runoff (USEPA, 2017).
Third, regional transportation policies should consider the walkability
and the connectivity to facilitate compact urban space needed for the
long-term sustainability (Huh, 2018).

The analyses include uncertainty stemming from the lack of compre-
hensive understanding of interactions among socio-environmental pa-
rameters. More sophisticated methods with various indicators should
be considered to reduce this uncertainty. For example, a finer scale of an-
alytic unit could be considered to address the issue of modifiable area
unit problem to integrate the NDVI and census data (Fotheringham
and Wong, 1991). Incorporation of cultural ecosystem services
(Jennings et al., 2016; Plieninger et al., 2013) and qualitative interviews
(Chetty et al., 2016), demand of ecosystem services (Wolff et al., 2015)
as well as sensitivity analysis (Kreuter et al., 2001; Yi, 2017; Yi et al.,
2017) could reveal more nuanced multi-faceted spatial associations.
Finally, dynamic models that include future scenarios for direct or indi-
rect impacts of human-induced land and climate change could enhance
the robustness of forecasts (Norgaard, 2010).

5. Conclusion

The novel empirical study of ecosystem services disparities among
racially segregated residential areas demonstrates the historical legacy
and path dependence of EJ linked to the 1930s racial concentration and
residential security maps of the Home Owners' Loan Corporation,
and continued racial segregation in and around San Antonio under
NAFTA. The overall results indicate that Hispanic and African American
minorities derive fewer ecosystem services benefits and face greater
pollution-related health risks and socio-economic disadvantages. The
forecasts of EJ highlight the spatially fixed and augmented likelihood of
‘social-ecological divide (SED)’ through 2050 driven by the path depen-
dent institutional inertia under NAFTA and, potentially, new United
States-Mexico-Canada Agreement.

The findings provide insights of ecosystem service-based EJ research
and suggest that current trajectory of racial residential segregation will
likely intensify the uneven distribution of ecosystem services in the San
Antonio region through 2050. Notably, health risks from transportation-
related air toxics are the most significant for the Hispanic population
along theNAFTA corridor, inwhich contemporary ‘new redlining of eco-
system service benefits’will persist in SanAntonio over the next fewde-
cades. Institutional transformations should be implemented tomitigate
entrenched environmental injustice and to reverse growing social-
ecological inequities in the San Antonio region under the continued
NAFTA-driven urban development. Furthermore, by incorporating the
supply of ecosystem services when addressing EJ and sustainability is-
sues in the rapidly urbanizing regions, the paper contributes more
broadly to science-based planning and better environmental decision-
making to mitigate urban SEDs resulting from historic racially segre-
gated development patterns and globalization effects both in the U.S.
and around the world.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2019.02.130.
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