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A B S T R A C T

Ecosystem Services (ESs) refer to the direct and indirect contributions of ecosystems to human well-being and
subsistence. Ecosystem valuation is an approach to assign monetary values to an ecosystem and its key eco-
system goods and services, generally referred to as Ecosystem Service Value (ESV). We have measured spatio-
temporal ESV of 17 key ESs of Sundarbans Biosphere Reserve (SBR) in India using temporal remote sensing (RS)
data (for years 1973, 1988, 2003, 2013, and 2018). These mangrove ecosystems are crucial for providing va-
luable supporting, regulatory, provisioning, and cultural ecosystem services. We have adopted supervised ma-
chine learning algorithms for classifying the region into different ecosystem units. Among the used machine
learning models, Support Vector Machine (SVM) and Random Forest (RF) algorithms performed the most ac-
curate and produced the best classification estimates with maximum kappa and an overall accuracy value. The
maximum ESV (derived from both adjusted and non-adjusted units, million US$ year−1) is produced by man-
grove forest, followed by the coastal estuary, cropland, inland wetland, mixed vegetation, and finally urban land.
Out of all the ESs, the waste treatment (WT) service is the dominant ecosystem service of SBR. Additionally, the
mangrove ecosystem was found to be the most sensitive to land use and land cover changes. The synergy and
trade-offs between the ESs are closely associated with the spatial extent. Therefore, accurate estimates of ES
valuation and mapping can be a robust tool for assessing the effects of poor decision making and over-
exploitation of natural resources on ESs.

1. Introduction

Ecosystem Services (ESs) refer to the bundle of goods and services
which are indispensable for human well-being and subsistence
(Costanza et al., 1997, 2014; Braat and De Groot, 2012; MEA
(Millennium Ecosystem Assessment), 2005), whereas, ecosystem func-
tion (EF) refers to the processes and components that occur within an
ecosystem (Braat and De Groot, 2012). The ‘Ecosystem Service Values

(ESVs)’ is an approach to quantify and assign economic value to eco-
system goods and services and its functions. Due to growing demand
and overexploitation of natural resources, the structure and function of
an ecosystem are severely affected at local to global scale (Liu et al.,
2017; TEEB, 2010; Song and Deng, 2017). The coastal wetland in-
cluding mangrove, the freshwater swamp forest ecosystems, are pro-
viding valuable regulatory (storm protection, preventing coastal ero-
sion, nutrient cycling, waste treatment, habitat provision), supporting

https://doi.org/10.1016/j.jenvman.2019.04.095
Received 13 November 2018; Received in revised form 20 April 2019; Accepted 22 April 2019

∗ Corresponding author.
E-mail addresses: srikanta.arp.iitkgp@gmail.com (S. Sannigrahi), suman87_ssf@jnu.ac.in (S. Chakraborti), pkjoshi27@hotmail.com (P.K. Joshi),

saskia.keesstra@wur.nl (S. Keesstra), snsen@arp.iitkgp.ac.in (S. Sen), skpaul@arp.iitkgp.ac.in (S.K. Paul), urs@tamu.edu (U. Kreuter),
paul.sutton@du.edu (P.C. Sutton), jhashouvik@gmail.com (S. Jha), dbac@ecology.uni-kiel.de (K.B. Dang).

Journal of Environmental Management 244 (2019) 208–227

Available online 22 May 2019
0301-4797/ © 2019 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03014797
https://www.elsevier.com/locate/jenvman
https://doi.org/10.1016/j.jenvman.2019.04.095
https://doi.org/10.1016/j.jenvman.2019.04.095
mailto:srikanta.arp.iitkgp@gmail.com
mailto:suman87_ssf@jnu.ac.in
mailto:pkjoshi27@hotmail.com
mailto:saskia.keesstra@wur.nl
mailto:snsen@arp.iitkgp.ac.in
mailto:skpaul@arp.iitkgp.ac.in
mailto:urs@tamu.edu
mailto:paul.sutton@du.edu
mailto:jhashouvik@gmail.com
mailto:dbac@ecology.uni-kiel.de
https://doi.org/10.1016/j.jenvman.2019.04.095
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jenvman.2019.04.095&domain=pdf


(biomass production), provisioning (fish, crab, honey, timber produc-
tion) and cultural services (De Groot et al., 2002; Ren et al., 2016). Thus
most of the coastal communities are directly and indirectly rely on these
services for their livelihood and well-being. There are numerous studies
on ecosystem services. However, it is challenging to accurately measure
the biophysical economic values of ecosystem services due to over/
underestimation and double counting. In general, the natural reserve
region provides highly valuable ESs across the ecosystems (Liu et al.,
2017; Wang et al., 2014; Xu et al., 2017a,b; Yu and Han, 2016). The
rate of degradation of natural reserve ecosystems is gradually in-
creasing with time. This is due to persistent demand for various ESs,
mainly provisioning services, for human well-being. However, the
overexploitation of natural resources especially in the coastal natural

reserve region disrupts the native ecosystem structure and its services
(Viña and Liu, 2017; Liu et al., 2017; Bruel et al., 2010; Curran, 2004)
and in most of the cases, protection, and conservation interests are
limited to preservation of engendered species only. Apart from the
benefits of long-term species conservation and management, ecosys-
tems also have the potentiality to produce multiple ecosystem goods,
services, and functions (Viña and Liu, 2017).

The recent advancement in geospatial science and its broad appli-
cations in ES studies, including spatially explicit value transfer and ESs
modeling are found to be useful for its cost and time benefits. However,
in reality, the quantification of ESV of natural ecosystem is difficult, as a
limited valuation market exists to capture the costs of many indirect
services (carbon sequestration, gas regulation, climate regulation, etc.)

Fig. 1. (a) Location of the study area and (b) descriptions of the major eco-regions of Sundarban biosphere region.
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that makes these services invisible to its economic benefits (Curtis,
2004; Vo et al., 2012). Several approaches have evolved and in-
corporated in estimating use and non-use service values that explicitly
includes market price and benefit transfer approaches (Costanza et al.,
1997, 2014; De Groot et al., 2012; Troy and Wilson, 2006; Wilson and
Hoehn, 2006). Whereas, other valuation methods consist of contingent
valuation (CV), avoided cost (AC), reclamation cost (RC), production
approach (P), hedonic pricing (HP), conjoint analysis (CA), travel cost
(TC), replacement cost (RC) approaches among other (Vo et al., 2012;
De Groot et al., 2012), and spatial explicit biophysical modeling ap-
proach (Costanza et al., 2008; Nelson et al., 2009; Boumans et al.,
2002).

In this study, we have tried to quantify and map valuable ESs of
Sundarbans Biosphere Regions (SBR), a natural reserve region, known
as a unique ecosystem. The Sundarbans mangrove forest is the largest
mangrove patch in the world (Giri et al., 2007). This ecosystem is well
known for its environmental connotation, and it is significant for
storm/flood protection, biodiversity maintenance, habitat provision,
erosion control, nutrient recycling, and waste treatment services. Ad-
ditionally, millions of people depend on this ecosystem for their daily
livelihoods and subsistence. In spite of having a great significance in
protecting the natural and human resources and providing a substantial
amount of ecosystem goods and services, little efforts have been made
to effectively quantify and assess the economic importance of this vi-
brant ecosystem. The objectives of this study were to (1) classify the
region into several ecosystem types using ten supervised machine
learning algorithms; (2) estimated the economic values of multiple key
ESs of a natural reserve region using an adjusted equivalent value
coefficient; (3) evaluate the effects of landscape changes on ESs and
functions using both global and adjusted local coefficients; (4) identify
the most sensitive and vulnerable ecosystems using the coefficient of
sensitivity, coefficient of elasticity, coordination degree, and ES sensi-
tivity index. There are several studies on the economic importance of
ecosystem services, but this study contributes and improves the existing
literature by having machine learning methods with spatially explicit
techniques.

2. Materials and methods

2.1. Study area

Sundarbans biosphere region is located in the confluence of the
rivers Ganga, the Brahmaputra, and Meghna with an aerial extent of
10,000 km2 (India's share 40%, and Bangladesh's share 60%), of which
4264 km2 is under intertidal zone (Mandal et al., 2009). The mangrove
cover is subdivided into two main subsystems: (1) forest and (2) aquatic
(1781 km2). The region was declared as a zone of ecological importance
and came under part of the Man and Biosphere Programme of UNESCO
on 29th March 1989. The reserve region is subdivided into several
protected areas namely the Sundarban National Park, Sundarban Tiger
Reserve, wildlife sanctuaries (i.e., Sajnekhali, Haliday Island and the
Lothian Island). The landward limit of this region is determined by the
Dampier-Hodges line (Fig. 1). Nandy & Kushwaha (2011) classified this
biosphere region into four major sub-regions, i.e., the core zone
(1700 km2), a buffer zone (2400 km2), restoration zone (230 km2), and
the development zone (5300 km2). The landscape of the region is
mainly composed of tidal creeks, tidal/mudflats, salt marsh waterways,
high and low mangroves. The Sundarbans region along with the off-
shore and inshore zones of the Bay of Bengal (BoB) is very dynamic due
to constant interaction of two contrasting environments of land and sea.
This region is known for its high ecological and biological productivity
due to a continuous supply of nutrient-rich elements and organic matter
from mangrove litter (Datta et al., 2017; Rakshit et al., 2015; Mandal
et al., 2013; Mandal et al., 2012). The forest of Sundarbans can be
classified as littoral swamp forest, including freshwater and mangrove
swamps mainly determined by the distribution of salinity. The climate

of the region is a tropical humid with the three significant seasonal
monsoonal periods, southern monsoon (June–September), post-mon-
soon (October–January), and pre-monsoon (February–May) (Nandy
and Kushwaha, 2010).

2.2. Land use land cover (LULC) classification

Multi-source remote sensing data products were used to map and
quantify the distribution of different ecosystems. In the ES valuation
research, defining ecoregions is the most important for its success in
deriving ESV. For this purpose, Landsat Multi-Spectral Scanner (MSS)
for 1973, Thematic Mapper (TM) for 1988, 2003, and Operational Land
Imager (OLI) for 2013 and 2018 with path 138, and rows 044 and 045
were used to classify the regions into seven major ecoregions. Except for
the data of 1973, the radiometrically and geometrically calibrated
Landsat data products were retrieved from EarthExplorer (https://
earthexplorer.usgs.gov/) and thoroughly been used for subsequent
analyses. However, in order to remove the seasonal differences and
maintain the consistency in classification, satellite data collected in
December/January month with less than 10% cloud coverage were
used.

The data were classified into six major eco-regions, i.e. cropland,
mixed/natural vegetation, mangrove, waterbody, sandy coast, and
urban using supervised machine learning algorithms [i.e., Artificial
Neural Network (ANN), Decision Tree (DT), Bayes, Gradient Boosted
Tree (GBT), Linear Discriminant Analysis (LDA), K Means Nearest
Neighbour (KNN), Maximum Likelihood Classification (MLC), Support
Vector Machine (SVM Linear and Radial Basis Function – RBF), Random
Forest (RF)]. The usefulness of machine learning algorithm is instru-
mental for large scale mapping and in the data-sparse environment that
makes it a more successful in recent literature (Liu et al., 2017; Maxwell
et al., 2018; Zhu et al., 2017; Sannigrahi et al., 2017, 2018; Janalipour
and Mohammadzadeh, 2017). However, no such single method is ex-
emplary for obtaining multiple ecosystems. This study has chosen
various classification techniques, and among them, the best model is
used for the input of ES calculation in each respective year. In the
classification process, the waterbody category was further divided into
two separate units, i.e., coastal estuary and inland wetland for valuation
of ESs. An average of 50–60 training sample features was extracted for
each ecoregion to perform the classification. The ENVI 5.3 software
system was used for the SVM and maximum likelihood classification,
IDRISI TerrSet software was used for the KNN and LDA algorithms, the
EnMAP-Box suite for ENVI 5.3 was used to perform the RF algorithm,
and QGIS Orfeo ToolBox (OTB) was used for ANN, BAYES, DT, GBT,
and SVM models. Afterward, a 4×4 majority filter was applied to re-
move isolated pixels from the thematic layers. The conversion of land
from one unit to another was measured through a uniform spatial
harmonization approach, designed for multiple reference periods. Ad-
ditionally, a transpose matrix was developed to measure the LULC
transformation among the ecosystem types. The spatiotemporal
changes in different LULC categories were measured as follows:

= ×LULC LULC LULC
LULC

100i
End Start

Start (1)

= × ×LUCI LULC LULC
LULC t

1 100End Start

Start (2)

where, LULCi is the change in land use land cover during the re-
ference periodi, LULCEnd and LULCStart is the area of a particular land
use unit at the ending and starting time, LUCI is change intensity of
LULC categoryi, t is the reference period for which estimation was
made.

2.2.1. Accuracy assessment of thematic layers
The reliability and accuracy of the classified images were verified

through several accuracy assessments test, including the User's
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Accuracy (UA) denotes user's perception in classifying an earthed ob-
ject, Producer's Accuracy (PA) is referring to the proportion of the area
of each ecosystem types or earth objects in the ground that are correctly
mapped, Overall Accuracy (OA) denotes the percentage of sample units
that are correctly associated with the reference or classified thematic
layer, and Kappa coefficient is based on the concept of ‘random allo-
cation agreement’. However, the uses of kappa in classification accu-
racy assessment have severely criticized by many studies (Pontius and
Millones, 2011; Stehman and Wickham, 2011) and recommend to not
go for kappa while assessing the accuracy of LULC results (Olofsson
et al., 2013). Following the Olofsson et al. (2013, 2014) schemes of
classification and accuracy assessment, in this study, we have per-
formed the entire LULC classification analysis by several steps (1)
classified the region into six major eco-regions using 10 machine
learning algorithms; (2) evaluated the thematic accuracy of the classi-
fied products through several standard accuracy statistics including UA,
PA, OA, and kappa coefficient; (3) estimated the total area proportion,
class area estimates using visual sample units for assessing the precision
of land use classification and identification of mapping errors; and (4)
quantified the variance of estimates, standard errors of area estimates,
and confidence intervals for both 95% and 99% level for the error-free
area approximation.

For evaluating the accuracy and precision of the classification out-
puts, we used 50–60 visual sample units for different reference years
(Congalton, 1991). The validation sample units were extracted from the
Google Earth (GE) imagery and historical land use maps of the Sun-
darbans for multiple assessment years (Yang et al., 2017). For all re-
ference years, 85–95% overall accuracy was obtained for all machine
learning algorithms, and among them, the best-classified output was
chosen for the ES valuation and mapping.

For computing the estimated area proportion of class k, two dif-
ferent proportion parameters, i.e., map classification parameter p .k and
reference classification parameter pk. were used. Due to classification
error and uncertainties, the map classification parameter produces
biased estimation than that of reference classification parameter. The
‘good practice’ guidelines by Olofsson et al. (2014) proposed that re-
ference classification parameter producing relatively higher quality
estimates and low standard error compared to map classification
parameter and area estimation of land classes should be based on the
reference parameter.

After that, for class k, the direct estimate of the proportion of area
can be calculated as

=
=

p k p.
i

q
ik1 . (3)

where p k. is the proportion of area derived from the reference clas-
sification parameter, q is error matrix, pik.is the area proportion of ca-
tegory k. However, for the simple random, systematic, or stratified
random sampling design with map classification strata, stratified esti-
mates of the proportion of area can be calculated as

= ×
=

p k W n
n

.
i

q
i

ik

i1 (4)

where Wi is the area proportion of map class i, nis the sample counts of
k. The standard error for stratified estimates of proportion was mea-
sured as
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where, S p k( . ) is a standard error of area estimates, nik is sample count
at cell (i k, ),Wi is area proportion of class i. In addition to this, the area
of class k is the function of = ×A A S p( )k k. where A is the area.

Furthermore, the standard error of the estimated area at 99% and 95%
confidence interval is measured as

= ×S A A S p k( . ).k k
(6)

= ± ×

= ± ×

CI A S A

CI A S A

95% 1.96

99% 2.58

k k

k k
(7)

where, CI95% and CI99% are confidence intervals at 95% and 99%

level, S Ak is a standard error of the estimated area (Stehman and

Wickham, 2011; Olofsson et al., 2013, 2014; Wagner and Stehman,
2015; Khatami et al., 2017).

2.2.2. Similarity and dissimilarity assessment of the classification outputs
As the LULC maps were prepared using different classification al-

gorithms; therefore, it is necessary to capture the inter-model varia-
bility of the classification output. In that case, the kappa and other
conventional accuracy measures fail to capture such spatial variability.
Therefore, different similarity and dissimilarity matrices including
Spearman Dissimilarity (SD), Gower Coefficient (GC), Cosine Similarity
(CS), Percent of Agreement (PA), Bray-Curtis Dissimilarity (BCD), Chi-
Square Distance (CSD), Kendall Dissimilarity (KD), Pearson
Dissimilarity (PD), and Percent of Disagreement (PED) were used, to
select the model more robust in classification assessment. The (dis)si-
milarity measures between two components reflect the dependency and
independence between two elements (X, Y) in a sequence, where, the X
and Y represent the estimates from two objects in a sequence.
Moreover, a binary similarity estimate, Jaccard Coefficient for evalu-
ating the spatial (dis)association of the model estimates combining all
reference years was performed. Total 26,133 sample points were used
to perform the similarity and dissimilarity of the model outputs. Map
classification information derived from a series of machine learning
models was extracted through a grid scale for the whole study region.
Additionally, all the classified ecoregions were transformed into a dis-
crete unit to perform the mentioned test.

2.3. Estimation of ecosystem service values

2.3.1. Determining equivalent weight coefficient
Developing a robust and identical equivalent weight coefficient is

the precondition for estimation of per unit ESVs of an ecosystem
(Costanza et al., 1997, 2014; Xie et al., 2003, 2008, 2017). We choose
17 main ESs, i.e. gas regulation (GR), climate regulation (CR), dis-
turbance regulation (DR), water regulation (WR), water supply (WS),
erosional control (EC), soil formation (SF), nutrient cycling (NC), waste
treatment (WT), pollination (POL), biological control (BC), habitat
(HA), food production (FP), raw materials (RM), genetic resources
(GEN), recreation (REC), and cultural (CUL) services from the study of
Costanza et al., (2017). The equivalent weight coefficient for each ES
for the temporal reference years was calculated using a revised
equivalent value coefficient (Tables S1 and S2). At first, we converted
the 1997 and 2007 unit values into 2017 US$ units to adjust inflation
using the US Department of Labour Consumer Price Index Inflation
Calculator (https://www.bls.gov/data/inflation_calculator.htm). The
ESVs derived from the non-adjusted and adjusted unit values for the
specific ESs are shown in Table 2. Initially, in Costanza et al. (1997)
valuation, an underestimated equivalent value was approximated for
cropland region that exhibited considerably lower value estimates for
cropland ecosystem, which is one of the main representative ecosystem
types in most of the Asian countries. Since the food production service
of cropland is the most direct services we considered, and their
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valuation is entirely based on the market price, we have used these
estimates as a base for the valuation of other services. After that, the
equivalent value coefficient of other ESs was measured from the crop-
land coefficient value, assuming that the equivalent value coefficient of
food production service of cropland is equaled to one (Fu et al., 2016;
Song and Deng, 2017).

2.3.2. Parameter adjustment and rectification
For the regional and provincial scale, the global equivalent coeffi-

cient exhibited a substantial bias and uncertainties in valuing ESs, as it
is not free from the apparent landscape complexity and spatial het-
erogeneity in which the given coefficients become inefficient to pro-
duce the real economic values for a target ecosystem. Several studies
have adopted various factors for dynamic corrections of the value
coefficient. For example, a positive association was found between
amount and distribution of precipitation and water supply, water reg-
ulation services, whereas, amount of biomass, net primary productivity
(NPP), and normalized difference vegetation index (NDVI) are related
to GR, CR, DR, habitat generation, biodiversity maintenance, soil for-
mation and retention services (Fu et al., 2016; Xie et al., 2008, 2017;
Zhang et al., 2017; Li et al., 2018; Huang and Ma, 2013). Among those
correction factors, the biomass and NPP factors were used explicitly for
developing a dynamic equivalent factor and estimating indirect reg-
ulating services using a varied spatially explicit biophysical and sta-
tistical value transfer approaches (Song et al., 2015; Sannigrahi et al.,
2018a,b). Additionally, studies have shown a high to a statistically
significant positive correlation between the biomass-NDVI factors and
ecosystem functions (Fu et al., 2016; Wang et al., 2015; Fei et al., 2018;
De Groot et al., 2002). In this study, NPP, NDVI, Yield, Precipitation,
fractional vegetation cover (FVC), and NPP/NDVI factors were used to
adjust equivalent coefficients for several reference periods (Table 1, Fig.

S1). To calculate the spatiotemporal NPP, we have used the grid level
precipitation and evapotranspiration retrieved from TerraClimate
(http://www.climatologylab.org/terraclimate.html; Abatzoglou et al.,
2018).

Using the dynamic correction factors mentioned above, we have
adjusted the corresponding equivalent value coefficient of each ESs for
1973, 1988, 2003, 2013, and 2018 reference years as follows:

= ×
= ×
= ×
= ×

EF B F
EF P F
EF V F
EF Y F

ij j n

ij j n

ij j n

ij j n

1

2

3

4 (8)

where, EFijis dynamic equivalent factor in eco-region j and ecosystem
service i; Bjis dynamic biomass (NPP and NDVI) correction factors for
eco-region j, Pj is precipitation correction factor in eco-region j, Vj is
dynamic FVC factor in eco-region j, and Yj is spatiotemporal crop yield
factor in eco-region j, Fn1 is equivalent coefficient value of GR, CR, DR,
waste treatment, pollination, biological control, habitat, raw material
production, genetic resources, recreational, and cultural services, Fn2 is
equivalent coefficient value of water supply, WR services, Fn3 is
equivalent coefficient value of erosion control and soil formation ser-
vices, and Fn4 is equivalent coefficient value of food production service.
The dynamic correction factors Bj, Pj, Vj, and Yj were estimated for the
entire county and administrative levels which reflects the pattern of
NPP, biomass, NDVI, and rainfall at the study region and entire country
as follows:

= +

=

=

=

( )
( )
( )
( )

B

P

V

Y

i
NDVI
NDVI

NPP
NPP

i
R
R

i
FVC
FVC

i
Y
Y

i
j

i
j

i
j

i
j

i
j (9)

where, Rand Y are rainfall and crop yield factors, i j, are the distribu-
tion of the dynamic factors at study region and the entire country scale.
To estimate Yi factor, temporal crop yield data was collected from the
District Statistical Handbook, provided by the Department of Planning,
Statistics, and Programme Monitoring, Government of West Bengal,

Table 1
Correction factors used for adjusting the model parameters.

Year Yield NPP NDVI Rainfall FVC NPP & NDVI

1973 1.45 1.07 1.13 1.38 2.25 1.10
1988 1.45 1.64 1.17 1.48 1.70 1.40
2003 1.32 1.54 1.26 1.54 1.55 1.40
2013 1.27 1.37 1.14 1.42 1.46 1.26
2018 1.28 1.63 1.21 1.49 1.61 1.42

Table 2
Adjusted and non-adjusted ESVs of different land classes in the study region.

MV CL CE MA IW UB

NAD AD NAD AD NAD AD NAD AD NAD AD NAD AD

GR 2 0 0 0 0 0 0 0 0 0 0 0
CR 8 6 303 215 173 125 17 12 18 13 36 26
DR 0 0 0 0 0 0 1399 1006 110 81 0 0
WR 1 0 0 0 0 0 0 0 206 166 1 1
WS 12 10 295 234 0 0 318 253 15 12 0 0
EC 9 8 79 74 9158 8540 1028 959 96 88 0 0
SF 0 0 392 370 0 0 0 0 0 0 0 0
NC 0 0 0 0 0 0 12 9 63 51 0 0
WT 16 11 292 208 0 0 42,401 30,476 111 82 0 0
POLL 7 5 16 12 0 0 0 0 0 0 0 0
BC 6 5 24 17 0 0 0 0 35 26 0 0
HA 251 184 0 0 70 50 4482 3222 90 66 0 0
FP 246 181 1712 1269 861 636 291 214 23 17 0 0
RM 11 8 161 115 4 3 94 67 20 15 0 0
GEN 251 184 768 546 65 47 81 58 4 3 0 0
REC 5 4 60 43 92 67 574 412 81 60 225 166
CUL 30 25 0 0 16 11 0 0 73 54 0 0

MV=Mixed Vegetation; CL = Cropland; CE = Coastal Estuary; MA=Mangrove; IW = Inland Wetland; UB = Urban Built-up; NAD = Non Adjusted;
AD=Adjusted; GR=Gas Regulation; CR = Climate Regulation; DR=Disturbance Regulation; WR = Water Regulation; WS = Water Supply; EC=Erosion
Control; SF = Soil Formation; NC = Nutrient Cycling; WT = Waste Treatment; POLL = Pollination; BC = Biological Control; HA = Habitat Service; FP = Food
Production; RM=Raw Material; GEN=Genetic Service; REC=Recreation; CUL = Cultural Service.
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India (http://www.wbpspm.gov.in).
Additionally, the spatiotemporal NPP using two separate models

including Leith NPP (Leith 1975; 1977) and Thornthwaite Memorial
(TM) model (Leith, 1977) were estimated using the following models:

= ×
= ×

NPP e
NPP e

3000 (1 )
3000 (1 )

r
P

ET
ET

0.000664

0.0009695 (10)

where, NPPr and NPPET are the Miami and TM model, r , P and ET are
rainfall and evapotranspiration functions. The NDVI and FVC were es-
timated using the following equations:

=

=

+NDVI

FVC NDVI NDVI
NDVI NDVI

NIR d
NIR d

Re
Re

min
max min (11)

where, NIRand dRe are surface reflectance at near-infrared and red
bands, FVC is fractional vegetation cover, NDVImax and NDVImin is
maximum and minimum NDVI in the region (Xie et al., 2017).

2.3.3. Determining standard invariant equivalent value factor
In this study, all the four groups of ESs and functions, i.e., provi-

sioning, regulating, supporting, and cultural services were incorporated
to measure the per unit ESVs using the corresponding equivalent value
(EV) and a modified equivalent value factors (EVF) approximated for
the selected ESs (Xie et al., 2017; Costanza et al., 2017; Song and Deng,
2017; Xie et al., 2008). The EVF is a simplistic approach and requires
less extensive data. It is the easiest way to measure the EV of ecosystem
types and services. Here, we have analyzed total 17 ESs and functions
proposed by Costanza et al. (1997, 2014) and De Groot et al. (2012) to
quantify the spatiotemporal ESVs using a revised EVF for five reference
years. Additionally, we have evaluated the spatiotemporal variation
and response of these ESs to LULC changes for seven major eco-regions
of Sundarbans, i.e., cropland, mangrove, natural vegetation, coastal
estuary, inland wetland, sandy coast, and urban land, respectively.
Song and Deng (2017) reported that in Costanza et al. (1997) valuation
framework which is based on simple benefit transfer approach, the
cropland ecosystem had been excluded from assigning per unit EV for
any ESs, assuming that this ecosystem has no specific contribution to-
wards the provision of ESs, except food production service. This may be
due to the per unit EV of major ecosystem types of the world was in-
itially approximated for the western countries, where agriculture
system appears to be insignificant to produce valuable ESs. Moreover,
an underestimated EV of cropland compare to other ecosystems is the
main reason of undervalued ESV in the agriculture-based nations,
especially in India, where farmland is one of the most significant eco-
system types (Sannigrahi et al., 2018a,b). In this study, we adopted the
updated per unit values provided by Costanza et al., (2017) and De
Groot et al. (2012), and subsequently the per unit equivalent value was
measured from the cropland equivalent value. Initially, the equivalent
value coefficient of food production service of cropland was chosen one.
Afterward, the equivalent weight factors of the remaining ESs were
calculated from the cropland equivalent factor. Additionally, depending
on the average crop production statistics of the study region, we have
estimated the average food production value of cropland assuming that
the proposed food production is equal to 1/7 of the actual food pro-
duction. Later, the equivalent value of food production service for per
unit area of cropland and other ecosystems were estimated by multi-
plying the EV and corresponding equivalent weight coefficient. More-
over, using the equivalent value of food production service of cropland
(Liu et al., 2010; Xie et al., 2003, 2008), the equivalent value of the
remaining services and functions were calculated (Fu et al., 2016). The
economic value of food production service of cropland was measured
as:

= ×
=

E P Q1/7 (a
i

n

i i
1 (12)

where, Ea is the economic value of food production service provided by
cropland (US$ ha−1), i is the crop types, Pi is the price of the crop i (US$
kg−1), and Qi is yield of the crop i (Kg ha−1). Additionally, using the
crop price (0.27 US$ kg−1) and crop yield (2458.85 kg ha−1) of major
crops of the study region, the equivalent value of food production of
cropland was estimated 94.55 US$ ha−1. This dynamic equivalent
value was adjusted with inflation factor.

2.3.4. Dynamic correction and invariant/comparable economic valuation
In the time series ES valuation, it is essential to adjust the data for

confirming the comparability of economic estimates and to develop a
standard invariant equivalent value by eliminating the price fluctua-
tion, inflation, and fixing other economic factors. Different economic
indicators including the Purchasing Power Parity (PPP), Consumer
Price Index (CPI), Willingness to Pay (WP), inflation rate, Engel coef-
ficient (En), Pearl growth curve model, etc. have been used extensively
to standardize economic values at regional and local scale ESV esti-
mation. Here, we first estimated the comparable economic value of food
production service of cropland utilizing the information of the inflation
index as follows:

= × ×E E 100%an am
m

n (13)

where, Ean is invariant economic value, Eam is the current economic
value of food production service of cropland ecosystem in the year m,
is the yearly inflation index, m n, is current and past year. The inflation
index can be calculated as follows:

= ×IR CPI CPI
CPI

100m n

n (14)

where IRis the inflation rate, CPI is consumer price index, m n, is cur-
rent and past year.

The level of socio-economic development and awareness of people
about the need for ESs significantly determine the economic values of
ESs, especially the indirect ecosystem goods and services (De Groot
et al., 2002). Several approaches including the willingness to pay,
willingness to accept, hedonic pricing, Pearl's S-shaped growth curve
(PGC) model have been utilized explicitly to evaluate the impact of
human development on economic valuation of ESs. The awareness and
people's willingness to pay is determined by the “S” shape pattern of
socio-economic development (Fu et al., 2016). The awareness would be
low at the lower stage of socio-economic development and vice versa.
In this study, we have used the PGC model to assess the linkages be-
tween the level of socio-economic development and ESs as follows:

=
+

×E
e

E1
1 t an (15)

=t
E
1 3

n (16)

where E is the adjusted ESV in the year m, e is natural logarithm, t is
socio-economic development indicator, Ean is food production service
value of cropland in the current year, En is Engel coefficient ranges
between 0 and and 1.

2.3.5. Estimating regional ecosystem service values using adjusted
coefficient

Using the adjusted unit values, we have measured ESVs of seven
ecosystems of Sundarbans for five reference years. We also calculated
the spatiotemporal distribution and changes of ESV's during five re-
ference periods, i.e., 1973–1988, 1988–2003, 2003–2013, 2013–2018,
and 1973–2018. The total ESV's was calculated as follows:

S. Sannigrahi, et al. Journal of Environmental Management 244 (2019) 208–227

213

http://www.wbpspm.gov.in


= × ×
=

ESV E EF Aj
i

ij j
1

17

(17)

= × ×ESV E EF Ai
j

ij j

7

(18)

= × ×
= =

ESV E EF A
i j

ij j
1

17

1

7

(19)

where, ESVj, ESVi , and ESV is ecosystem service value (US$ ha−1

year−1) of ecosystem type j, and ecosystem service i, total ecosystem
service value, E is dynamic corrected food production service of crop-
land (US$ ha−1), EFij is the dynamic adjusted equivalent value coeffi-
cient of ecosystem service i and ecosystem types j, Aj is area (ha) of
ecosystem type j, respectively (Kindu et al., 2016; Liu et al., 2012;
Costanza et al., 2017; Yoshida et al., 2010; Yushanjiang et al., 2018).
After that, the spatiotemporal change rate and dynamic degree of
changes of ESV were measured as follows:

= ×ESV ESV ESV
ESV

(%) 100%ij
end start

start (20)

= × ×ESV ESV ESV
ESV t

1 100%ij
end start

start (21)

where ESVijrefers to the change of ESV's of ecosystem type j and
ecosystem services i ESVend and ESVstart exhibits the ESV of past and
current year of the research period, t represent the periods, respec-
tively.

2.4. Estimating coefficient of sensitivity, the coefficient of elasticity,
ecosystem service sensitivity index, and coordination degree

To measure the impact of any external disturbances on ESs, there is
a need to perform a sensitivity test, therefore, we have tested four
different sensitivity tests including the Coefficient of Sensitivity (CS),
Coefficient of Elasticity (CES), ecosystem service sensitivity index
(ESSI), and Coordination Degree (CD) for different reference years and
periods. The CS is based on a standard economic concept of elasticity,
was used for assessing the impact of LULC changes on ESs, measured as
follows:

=CS
ESV

VC VC
(ESV )/ESV
( )/VC

j i i

jk ik ik (22)

where ESV refers to ecosystem service value, VC is value coefficient, i
and j represent initial and adjusted values, and k is ecosystem types.
Additionally, the spatiotemporal stationarity and changes of ESV is
measured through variation of VC, as ESV measured for each ecosystem
types and services would be elastic when CS exceeds the threshold
(> 1). Also, the value would be inelastic when CS < 1. In addition,
CS=1 and CS=0 indicates the complete (in)elasticity (Fu et al., 2016;
Tolessa et al., 2017; Yi et al., 2017; Sannigrahi et al., 2018a,b). This
signifies that the use of an accurate ecosystem value coefficient would
be more critical when high relative proportional changes in VC is as-
sociated with high proportional changes in ESV (Kreuter et al., 2001).
Additionally, we have framed five different value coefficient degree,
i.e., 50%, 40%, 30%, 20%, and 10% to assess the sensitivity of ESV's at
different value coefficient level.

The coefficient of elasticity (CES) depicts the sensitivity of a re-
sponding variable to change one control variable (Sannigrahi et al.,
2018a,b; Song and Deng, 2017). In this study, we measured ES elasti-
city of the major ecosystem types and services of Sundarbans using
spatiotemporal LULC change as a control variable and per unit changes
of selected ESs as a response variable. These estimates would be helpful
to categorize the most vulnerable and distressed ecosystem at any given
ecosystem. The CES was measured as follows:
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where, ESVi and ESVj is the end and the start of the research period,
LCP is the land change percentage, TA is converted area of ecosystem
type j, Aj is the area of ecosystem type j, t is research period. Ad-
ditionally, we have identified the most sensitive ecosystem of the region
using both coefficients of elasticity for a reference period and coeffi-
cient of sensitivity of the starting and end of the research periods.
Moreover, to evaluate association and coordination between the
changes of ecosystem types and ESVs, temporal coordination degree
(Luo et al., 2018) was measured using the following equation:
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where = =L L L E E E,tj t t tj t t1 1 Ltj is the area of ecosystem type j
in the year t , Ltj 1 is the area of ecosystem type j in the year t 1, Etj is
ecosystem service value of ecosystem type j in the year t , Etj 1 is ESV of
ecosystem type j in a year t 1.

2.5. Evaluating spatial scale-dependent synergies and trade-offs of
ecosystem services

Spatial scale-dependent trade-offs and synergy among the ESs were
evaluated at multiple spatial scales. The trade-off is a situation when
the uses of one ES directly or indirectly decrease another ES. Therefore,
it is based on win-lose or lose-win situation. The synergy is a situation
when uses of one ES is increasing benefits of another ES, and thereby
produce a win-win situation. Using ArcGIS fishnet tool, 20 spatial grids
starting from 1 km to 20 km were prepared, and the average value was
taken for each grid. The grid data were normalized in a range between 0
and 1 eliminating effects of outliers during model construction. Total
68,240, 16,699, 7,306, 4,004, 2,535, 1,735, 1,238, 912, 707, 568, 462,
374, 310, 254, 232, 185, 170, 134, 126, and 114 samples were ex-
tracted and used for grid-scale analysis for 1 km–20 km grid size. Zonal
mean values of two administrative divisions, including the block level
and county level, were adopted for estimating spatial trade-offs and
synergies. Moreover, the spatial correlation between all four ES bundles
(regulating, supporting, provisioning, and cultural) was measured
through a per pixel analysis using the ArcPy site-packages.
PerformanceAnalytics packages in R statistical software measured
Pearson correlation matrix across the scales.

3. Results

3.1. Classification and spatiotemporal changes of LULC (1973–2018)

Cropland is the dominant land use type in the study region, con-
tributing 44.8% to the total geographical area, followed by coastal es-
tuary (21.95%), mangrove forest (15.9%), mixed vegetation (12.57%),
urban built-up (2.38%), inland wetland (2.24%), and sandy coast
(0.11%) (Fig. 2a and b). The coastal estuary, mangrove, and inland
wetland ecosystems are the most important and ecologically and bio-
logically diverse ecosystems in the study region and have increased in
the geographical extent between 1973 and 2018 (Fig. 2a and b). The
spatial conversion of the LULC classes is presented in Fig. S2 and Fig.
S3. During 1973–2018, urban land has significantly increased at the
expense of cropland and greenspace in and around the Kolkata suburbs.
The inland water bodies also increased during this period at the expense
of cropland and natural green cover. A significant area of mangrove
cover is lost during the study period, primarily due to coastal erosion
and human-led destruction.

The performance and accuracy of machine learning models were
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Fig. 2. (a) Distribution of the major land use land cover types of Sundarban estimated for five reference years, (b) shows the area (ha) and proportion (%) of the eco-
region.
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assessed through an area based unbiased approach including UA, PA,
OA, and Kappa statistics (Tables S3 and S4, Fig. 3). For all the study
years, MLC algorithm has exhibited the least accuracy, except for the
year 1973. Among the ten machine learning models, RF and SVM
performed the most accurate for all the reference years (Table S3).
Considering the other two statistics namely OA and Kappa, the best
results were obtained for RF and SVM models (Fig. 3, Table S4). SD
value was found to be the highest for MLC model, followed by LDA, RF,
DT, ANN, GBT, BAYES, KNN, SVM, and SVMLIN, respectively Fig. 4).
The lower SD value indicates the high model performances and the least
uncertainty. The GC is a similar measure to assess the spatial associa-
tion between the models used for LULC classification. The highest GC

value was found for SVMLIN, followed by SVM-RBF, KNN, ANN, GBT,
BAYES, DT, RF, LDA, and MLC (Fig. 4). High GC values are equivalent
to high model performances and least uncertainty. Thus, the SVMLIN
and SVM-RBF were found to be the best algorithms to perform su-
pervised classification. The maximum overall CS value was found for
ANN for all reference years, followed by RF, SVMLIN, KNN, DT, LDA,
BAYES, SVM-RBF, GBT, and MLC. The PA test was also performed to
assess spatial agreement between two supervised models. Maximum PA
value was found for SVMLIN, followed by SVM-RBF, ANN, KNN, GBT,
BAYES, RF, DT, LDA, and MLC. Furthermore, we have conducted the
BCD test to examine dissimilarity between the models. High BCD values
are representing the least model accuracy and high uncertainties in

Fig. 3. The producer's accuracy (PA) and user's accuracy (UA) of the ten supervised models.
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Fig. 4. Similarity and dissimilarity statistics between the land use land cover classification derived from 10 machine learning models. SD=Spearman Dissimilarity,
GC=Gower Coefficient, CS=Cosine Similarity, PA=Percent of Agreement, BCD=Bray Curtis Distance, CSD=Chi-Square Dissimilarity, KD=Kendall Dissimilarity,
PD=Pearson Dissimilarity, PED=Percent of Disagreement.
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model estimates. Additionally, the CSD test was performed to evaluate
spatial homogeneity of the models and suggests that among the ten
algorithms, the SVM performs most accurately. The results of the KD
test, conducted to assess the model, indicates the least accuracy and
high uncertainty and dissimilarity. Among the ten machine learning
algorithms, the highest KD value was found for MLC, followed by LDA,
RF, DT, GBT, ANN, BAYES, KNN, SVM-RBF, and SVMLIN. The PD test
was used to test the spatial dissimilarity between the models. High PD
reflects high spatial dissimilarity and vice-versa. PED test was used to
examine the percent of disagreement between the models. High PED
value indicates more substantial uncertainty and least model perfor-
mances. In this analysis, we found high PED value for MLC, followed by
LDA, DT, RF, BAYES, GBT, KNN, ANN, SVM-RBF, and SVMLIN, re-
spectively (Fig. 4).

3.2. Spatiotemporal variation of correction factors

Table 1 shows temporal variation of the six correction factors (yield,
NPP, NDVI, rainfall, FVC, and NPP & NDVI) used to adjust the global
value coefficients for estimating the spatially explicit value of multiple
key ESs for the study period. Yield factor was varied from 1.27 to 1.45,
found the lowest in 2013 (1.27) and the highest (1.45) in 1973 and
1988. NPP value was minimum (1.07) in 1973 and a maximum (1.64)
in 1988. NDVI value reached maximum (1.26) in 2003 and a minimum
(1.13) in 1973, respectively. The FVC estimates were found the highest
(2.25) in 1973 and the lowest (1.46) in 2013 during the study periods.
Additionally, it has been observed that the maximum (1.42) and
minimum (1.10) NPP & NDVI value was attained in 2018 and 1973
(Table 1).

Fig. 5 and Figs. S4 and S5 show the spatiotemporal variation of
monthly NPP derived from two NPP models, i.e., Miami and TM. Miami
NPP (gC m−2 month−1) ranges from ≈0 in January to ≈500 in Jun-
July-August, depending on the variation of monthly precipitation
which was used as a slope factor to estimate Miami NPP for the studied
period. The TM NPP, which is based on the monthly variation of eva-
potranspiration, was found maximum value (≈380) in May, and
minimum value (≈110) in January. The highest average NPP of Sun-
darbans was measured (≈450) during the monsoon period (Jun, July,
August) and the minimum (≈50) is recorded during the post-monsoon
period (December, January, February). The optimum climatic, biocli-
matic, phenological, and environmental stress variables including the
maximum and minimum temperature, precipitation, photosynthetically
active radiation (PAR), fraction of photosynthetically active radiation
(fPAR), NDVI, EVI, temperature stress, and water stress was found
during the post-monsoon season. Thereby the peak NPP values were
found in the post-monsoon season. More details are given in the dis-
cussion section.

3.3. Spatiotemporal variation and changes in ecosystem service values

Figs. 6 and 7 shows the spatial and temporal distribution and
changes of ESVs for five reference years, i.e., 1973, 1988, 2003, 2013,
and 2018. The highest ESVs (million US$ year−1) was observed over
the Gosaba, and Kultali block in Sundarbans. Open and dense mangrove
forests mainly cover these administrative provinces. Furthermore, due
to the expansion of water bodies including inland wetland and es-
tuarine surface, the total ESV's were increased during the study period.
These changes of ESVs (both positive and negative) are the outcomes of
land degradation and conversion of productive land into semi-modified
and artificial land.

In all reference years, the maximum ESV (both non-adjusted and
adjusted, million US$ year−1) is produced by mangrove forest, followed
by the coastal estuary, cropland, inland wetland, mixed vegetation, and
urban land, respectively (Fig. 8a). Considering the temporal changes of
ESVs during 1973–2018, mangrove ESV has increased significantly,
followed by mixed forest, inland wetland, and urban land, whereas, the
coastal estuary and cropland ESVs have decreased in the last 45 years.

Among the ES's, the WT service is the main ES of SBR with max-
imum (un)adjusted ESV (million US$ year−1), followed by EC, HA, FP,
DR, GEN, SF, WS, REC, CR, RM, WR, CUL, NC, BC, and POLL. (Fig. 8b,
Table 2). During the entire research period (1973–2018), the ESV of EC
has declined most rapidly, while a moderate to a low declining trend is
observed for FP, SF and WS services. During this period, a positive
change of ESVs was noted for WT, followed by HA, REC, DR, GEN, WR,
CR, CUL, NC, RM, BC, and POLL services. The increase of the key
regulating and supporting services is attributed to the expansion of
mangrove and water bodies during the study period. Additionally, the
rise in inland waterbodies at the expense of cropland and natural green
surface is evident in this research. This trend is evident in and around
the Sandeshkhali, Canning, Minakhan, Haora administrative province
due to higher involvement of shrimp cultivation and associated prac-
tices. In contrast, we observed that significant crop areas are lost during
this study period. This could be the reason for declining provisioning
services in Sundarbans, which is one of the primary sources of liveli-
hoods of the residents of Sundarbans (Table 2). The cropland ecosystem
is necessary for the production of food production service, which is the
main provisioning services considered in this study. Except for Gosaba
and Kultali blocks (covered by dense mangrove forest), most of the
administrative blocks of Sundarbans is characterized by high crop yield
and production. The declining status of the food production service
resembles a serious socio-economic threat to the communities live and
reliant on the natural agricultural commodities and associated eco-
nomic activities. The mangrove ecosystem is providing the multiple key
ESs including WT, HA, DR, EC services, etc. The inland wetland eco-
system is exceptionally beneficial in producing the WR, EC, DR, WT, HA

Fig. 5. Monthly variation of Miami NPP (gC m−2 month−1), Thornthwaite Memorial (TM) NPP (gC m−2 month−1), and average NPP (gC m−2 month−1) during the
study period.
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and REC services (Table 2). However, due to the significant increases in
ecologically productive lands, the net changes of ESV's were found
positive during the research period (Fig. 8c). This exhibits the en-
vironmental stability of the ecoregions.

3.4. Sensitivity and elasticity of ecosystem service values to land use changes

To understand the level sensitivity of ESVs at different land use and
value coefficient scenarios, the CS was measured for five sensitivity
levels (50%, 40%, 30%, 20%, and 10%) (Fig. 9a and b). Among the
ecosystem types, mangroves are the most sensitive to any anthro-
pogenic changes, followed by the coastal estuary, cropland, mixed ve-
getation, and inland wetland, respectively.

To evaluate the sensitivity of each ES's to LULC changes, we per-
formed the sensitivity test for the 17 major ESs for five reference years
(Fig. 9c and d). Among the 17 ESs, the WT service was found most
sensitive for all sensitivity level, followed by EC, HA, FP, DR, GR, SFR,
WS, REC, CR, RMP, WR, CUL, BC, NC, and POL services, respectively.
This provides an insight to understand the response behavior of the key

ESs to LULC changes, and this could be helpful for long-term land use
planning and sustainable natural resource management. Fig. 10a shows
the changes of ESVs to one unit change of LULC for different reference
years. During the entire research period (1973–2018), a negative
elasticity value was documented for cropland and coastal estuary,
whereas, the remaining ecosystems have produced low to very high
elasticity to LULC changes. Fig. 10b shows the elasticity status of the
selected ESs for five reference periods. During the entire research
period (1973–2018), the SF, EC, FP, and WS services exhibited negative
elasticity values, and CUL, REC, WR, NC, BC, HA, DR, WT, POLL, CR,
GEN, and RM services showed high to low positive elasticity to LULC
changes. This suggests the improving status of regulating and sup-
porting ESs in the survey period; however, a very negative elasticity
observed for FP, SF, EC services indicate the decreasing status of the
provisioning services in Sundarbans.

In this study, we have performed a new test called ESSI by com-
bining two sensitivity assessments (coefficient of sensitivity and elas-
ticity), to identify the most sensitive ecoregions of Sundarbans
(Fig. 10c). During research periods (1973–2018), mangrove was found

Fig. 6. Spatial distribution of ESVs (Million US$ year−1) in 1973, 1988, 2003, 2013, 2018, and during the entire research period.
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to be the most sensitive ecosystem with the highest ESSI value, followed
by inland wetland, mixed vegetation, coastal estuary, and cropland,
respectively. The outcome of this estimate could be used as an addition
to the conventional sensitivity measures where both the ESV coefficient
and land use fluctuation would play a significant role in identifying the
most sensitive and vulnerable ecoregion at any given ecosystem.

Additionally, we have performed another test to examine the co-
ordination between the ESs and LULC changes at multiple reference
periods (Fig. 11). The high and low coordination degree (CD) represents
higher and lower degree of association between ESs and LULC changes.
The outcome of this test could be helpful to understand the nature and
sensitivity of different ESs to any external forces. Due to the subtle
decline of provisioning services during the research periods, we have
observed a sharp positive association between the declining cropping
area and cropland ESVs for all reference periods. This suggests that the
cropland ESV appears to be most vulnerable due to substantial de-
creases of cropping area at the expense of shrimp pond, mixed vege-
tation, and urban land.

3.5. Trade-offs and synergies among the ESs at multiple scales and reference
years

To understand trade-offs (negative association) and synergies (po-
sitive association) between the bundles of ESs, we have performed a
spatial correlation test between the four major bundles of ESs (Fig. 12).
A very high synergy was found between the provisioning and cultural
services over the cropland region. While a trade-off relation observed
between provisioning and cultural services over the coastal estuary,
inland wetland, and urban area depicts a negative relationship. The

coastal estuary and inland wetland have no such capability to produce
substantial provisioning services, and hence, exhibiting a trade-off as-
sociation during the research periods. A very high synergy was ob-
served between provisioning and regulating services. While analyzing
provisioning and supporting services, a moderate to strong synergies
were measured over the coastal estuary and urban region, while a
medium to very high synergy was measured for inland wetland eco-
system. For regulating and cultural services, a moderate to strong sy-
nergies are documented for coastal estuary and cropland ecosystem,
and low to very high trade-offs is evident for mixed vegetation, urban
land, and inland wetland region. Also, for regulating and supporting
services, a moderate to very high synergies were reported for coastal
estuary, urban land, and partly for mixed vegetation. This trend was
reversed for inland wetland and mixed vegetation classes, where a
moderate to strong trade-offs are evident between the regulating and
supporting ESs. While evaluating the spatial association between sup-
porting and cultural ESs, a very high to moderate trade-offs were ob-
served for coastal estuary and urban areas, whereas, low to strong sy-
nergies are documented for mixed vegetation and inland wetland
system.

To assess the effects of spatial scale on trade-offs and synergies
among the ESs, we have performed the Pearson correlation test at
multiple spatial scale including grid scale, administrative (block) scale,
and county scale (Fig. 13a and b, Fig. S6, and Table S5). At the ad-
ministrative scale, a statistically significant association (both trade-off
and synergy) was found between WT and WS, WS and WR with REC,
WS and WR with DR, WR and BC, NC and EC, HA and CUL, EC and CR,
and DR and CUL (Fig. 13a, Fig. S6). At county scale, only three pairs are
found significant at the p≤0.001 level, five pairs were significant at

Fig. 7. Spatiotemporal changes of the ESs during the study period (1973–2018).
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p≤0.01 level and total 33 number of pairs are found to be significant
at p≤0.05 level. Additionally, at the county scale, total 79 pairs didn't
exhibit any significant correlation.

4. Discussion

4.1. Linkages between LULC and ESV change

For evaluating the uniformity of our LULC classification, we com-
pared our results with several other studies for the same ecosystem.
Nandy and Kushwaha (2010) had estimated the area of different
mangrove categories including Avicennia, Phoenix, mixed mangrove,
mangrove scrub, etc. together shared ∼223,400 ha geographical area
in 2002, which is much closer to our estimates of 217,685 ha for 2003.
Akhand et al. (2017) conducted a thorough time-series evaluation to
estimate the changes of mangrove cover of Indian Sundarbans for four
reference years 1975, 1989, 2001, and 2013 using multi-source remote
sensing products. This study revealed that the mangrove covers in 1973
were 222,400 ha, which reduced to 216,500 ha in 1989, 215,300 ha in
2001, and 211,700 in 2013. In our study, we have estimated 213,791 ha
mangrove forest cover in 1973, 217,541 ha in 1988, 217,685 ha in
2003, 230,833 ha in 2013, respectively. Also, for the mentioned re-
ference years, we had approximated a negligible under/overestimated
mangrove cover than that of the Akhand et al. (2017) estimation. Datta
and Deb (2012) revealed that during 1975–2006, open mangrove eco-
system was severely affected due to an acute demand for cropland and
hence resulted in the transformation of mangrove to cropland, and
shrimp pond due to increasing demand for brackish water aquaculture
(Fig. S3). However, on the contrary, the dense mangrove cover has
increased in this period which is in accordance with our observation. In
additional to these, Giri et al. (2007) studies on dynamics of mangrove
covers in Indian Sundarbans and reported that during 1970–2000,
mangrove cover of Sundarbans decreased by 1.2%, whereas, near the
same period (1973–2003), our study reported an increasing mangrove
area by 0.12%, derived from the results of 10 most sophisticated ma-
chine learning algorithms. However, the study by Giri et al. (2007)
stated that the mentioned estimation could be a result of erroneous
classification, which can be due to the variation of the tide, when most
of the intertidal features including tidal flat, mud flats, small water
channels are often exhibiting a similar spectral signature. Additionally,
Giri et al., 2011 reported dynamics of global mangrove had revealed
that except 20° N to 25° N, (the Sundarban mangrove ecosystem is lo-
cated in this zone), the mangrove ecoregion is decreasing gradually
with the increase in latitude. When the global mangrove areas followed
a decremental trend, the Sundarban mangrove has not changed sub-
stantially, despite having multiple physical and anthropogenic dis-
turbances (Giri et al., 2011).

Due to the increase of productive land, a net gain of ESVs was
measured as 7855 million US$ during 1973–2018 (Fig. 6). For each
ecosystem, the ESV (million US$ year−1) of mixed vegetation, crop-
land, coastal estuary, mangrove, inland wetland, and urban built-up
region categories varied from 39 in 1973 to 40,260 in 2018. The
maximum ESV is reported for mangrove ecosystem, followed by coastal
estuary, cropland, inland wetland, mixed vegetation, and urban land
depicting the importance of natural ecosystems primary correspon-
dence to mangroves and waterbodies (both freshwater and coastal
wetland) in order to produce the key ecosystem goods and services
which are indispensable for human well-being and subsistence
(Costanza et al., 2017; MEA (Millennium Ecosystem Assessment), 2005;
De Groot et al., 2012, Keesstra et al., 2018). Additionally, the man-
grove-rich Sundarbans are providing a substantial ESV for the key
regulating services including DR, WR, EC, where coastal floods, cy-
clone, coastal erosion, salinization are exhibiting serious environ-
mental, socio-economic threats to coastal communities of Sundarbans.

4.2. Spatial scale dependent trade-offs and synergies

LULC change is the outcome of various human or natural actions,
which vary from local to regional scale in dimension and direction. The
spatial association among the ESs and the effects of LULC changes on

Fig. 8. (a) Shows the ESVs (Million US$ year−1) of the major ecosystem types
of the study region for five reference years, (b) shows the ESVs (Million US$
year−1) of the selected ESs for five reference years, (c) shows the met gain, net
loss, and net changes of ESVs during 1973–1988, 1988–2003, 2003–2013,
2013–2018, and 1973–2018. NAD = Not Adjusted, AD=Adjusted.
MV=Mixed Vegetation, CL=Cropland, CE=Coastal Estuary,
MA=Mangrove, IW-Inland Wetland, SC=Sandy Coast, UB=Urban Built-up
region.
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ESs were measured through spatial trade-offs and synergy analysis
(Fig. 13). At the administrative scale, most of the ESs exhibited statis-
tically significant trade-offs and synergies. This suggests that at the
administrative level, land degradation and destruction of productive
land would incur a substantial loss of the critical ESs, which can't be
replenished by any form of human inputs. The WT, EC, DR, HA, and FP
services are the main ESs of Sundarbans. Considering the grid level
analysis, at 1 km scale, all the 120 pairs are significantly correlated
(p≤0.001) (Table S5). However, the maximum correlation was ob-
served between WT and REC, WT and HA, WT and DR, SFR and GEN,
SFR and FP, REC and HA, REC and DR, POL and GEN, HA and DR, and
FP and CR services (Table S5). At 5 km scale, amongst the 120 pairs,
only five pairs, didn't produce any significant association. For the 10 km
spatial grid, six pairs are significant at p≤0.05, five pairs at p≤0.01
level, and total 105 pairs at p≤ 0.001 level. Additionally, only four
pairs are found insignificant at the 10 km grid scale. Considering the
15 km grid scale, total 95 pairs were significantly correlated at
p≤0.001 level, ten pairs at p≤0.01 level, and five pairs at P≤0.05
level. Total ten pairs are found insignificant at this scale. At the highest
spatial scale (20 km), only 89 pairs are significant at p≤0.001 level,
six pairs at p≤0.01, and total 13 pairs at p≤0.05 level. At this scale
total, total 108 pairs are found to be significant at different significance
levels, whereas, total 12 pairs have produced an insignificant approx-
imation. For the ESs, the trade-offs and synergies values were found
insignificant after 3 km, 8 km, 11 km, and 18 km.

In this study, we have observed that despite having less number of
samples, the larger scale had produced a higher pairwise association
than that of smaller scale, although, in some cases, they are not

statistically significant. Xu et al., 2017a,b found that the scale effects on
ESs will decrease with spatial scale, as the higher pairwise correlation
was observed at a smaller scale and vice versa. This finding is not per
our estimates because the significant relationship of any estimate de-
pends on the number of samples, as high pairwise trade-offs and sy-
nergies are found insignificant in many cases despite having higher
correlation value. Additionally, to carefully asses the land use conflict
and its role in producing multiple ESs, it is important to evaluate the
pairwise association of the ESs at a spatial level. (Xu et al., 2017a,b).

4.3. Elasticity, sensitivity, and coordination degree - a new approach for
environmental impact assessment in natural reserve region

All sensitivity tests including the coefficient of sensitivity, the
coefficient of elasticity, ESSI, and coordination degree are collectively
indicating the response behavior of the ecosystem to any un-
precedented changes. This sensitivity estimates entirely depend on the
specificity of the ESVs and the regions under consideration.
Additionally, the linear approximation assumed throughout this study
may not be reflecting the complex and dynamic behavior of the eco-
system, as we haven't considered the other limiting factors which might
have some significant role on controlling the ecosystem response to any
unwanted change. Given all sensitivity measures, the mangrove and
water bodies including the coastal estuary and inland wetland are
found to be highly sensitive to human or natural appropriation. The
other ecosystems like cropland, mixed vegetation, and urban land ex-
hibited a moderate to lower sensitivity values for the mentioned
changes. Among the specific ESs, the WT, EC, HP, FP, and DR services

Fig. 9. (a) and (c) shows the coefficient of sensitivity (CS) of ESVs for six ecoregions and 16 ES at five scenarios (± 50%,±40%,± 30%,± 20%,±10%), (b) and
(d) shows the percentage of CS at five scenarios.
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were highly sensitive to any natural and human modification.
In this study, we evaluated the response and sensitivity of the major

ecosystems of Sundarbans to LULC changes and tried to provide an
insight into the possible effects of land conversion on ESs at multiple
changing scenarios. Although several protection measures were in-
itiated to preserve the mangrove tract of Sundarbans with the support
of forest protection committees (FPC), forest directories (FD), and local
stakeholders. Still, the economic values and significance of mangroves
in order to produce the essential ESs is somehow unknown or not fully
explored. However, it is true that even if these critical services are
beneficial for human well-being and subsistence, the valuation esti-
mates of these services has not been directly included in the decision-
making process due to the unawareness and methodological

uncertainties (Vo et al., 2012). Furthermore, the decision makers and
stakeholders involved in the policy-making are not familiar with the
quantified values; instead the cost and benefits figures for any en-
vironmental impact assessment (EIA). Therefore, accurate estimates of
ES valuation and mapping can be a robust tool for assessing the eco-
nomic and ecological impact of a specific ecosystem and to gauge the
effects of faulty decision making and overexploitation of natural re-
sources on ESs. Additionally, the sensitivity measures provided in our
study can also be considered in decision making along with the other
environmental management measures for better management of natural
resources at any given ecosystem and to perform EIA measures more
precisely to understand inevitable linkages between the socio-economic
development and environmental degradation in a natural reserve re-
gion like Sundarbans.

5. Conclusion

In this study, we have calculated the spatiotemporal ESVs of
Sundarbans biosphere region (SBR), the largest single mangrove tract in
the world. Total 17 ESs were chosen, and their monetary values are
estimated using the adjusted equivalent value coefficient. Total five
dynamic factors including NPP, precipitation, NDVI, FVC, and yield
were used to rectify the global coefficient values. Presently, cropland is
the dominant land use type in the study region, and contributes 44.8%
to the total geographical extent, followed by coastal estuary (21.95%),
mangrove forest (15.9%), mixed vegetation (12.57%), urban built-up
(2.38%), inland wetland (2.24%), and sandy coast (0.11%), respec-
tively. On the other side, due to the areal expansion of mangrove cover,
the ESVs of CR, DR, WS, NC, WT, HA, RM, GEN, and REC have in-
creased during 1973–2018, whereas, a net decrease of ESVs was ob-
served for EC, SFR, POLL, BC, FP. Whereas, the expansion of inland
waterbodies at the expense of cropland and the natural green surface is
found significant in this study. This trend occurred in and around the
Sandeshkhali, Canning, Minakhan, Haora administrative province due
to high rate conversion of shrimp ponds for inland fishing and asso-
ciated practices. In contrast, we have observed that significant crop
areas are lost during this study period. This could be the reason for
declining provisioning services in Sundarbans, which is one of the
primary sources of livelihoods of the residents of Sundarbans. Given all
sensitivity measures, the mangrove and water bodies including the
coastal estuary and inland wetland are found to be highly sensitive to
any human or natural appropriation. The other ecosystems like crop-
land, mixed vegetation, and urban land exhibited a moderate to lower

Fig. 10. (a) and (b) shows the coefficient of elasticity (CES) of the major ecor-
egions and ESs of Sundarbans for six reference periods, (c) ecosystem service
sensitivity index for the major ecoregions of Sundarbans.

Fig. 11. Shows the coordination degree between the ecosystem service values
and land use land cover charges during different reference periods.
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Fig. 12. Spatial association between the four ESs bundles, i.e. Prov= Provisioning, Cul= Cultural, Reg=Regulating, and Supp= Supporting services during the
research period.
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Fig. 13. Scale-dependent synergies and trade-off among the ESs at (a) administrative scale and (b) county scale.
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sensitivity values for the mentioned changes. The outcomes of this
study could be a helpful document to the land administrators, planner,
and environmentalist to understand the inevitable land-resource con-
flict in the natural reserve region. Additionally, it will provide an im-
portant reference to the decision makers to evaluate sensitivity, vul-
nerability, and resilience of an ecosystem to any unprecedented
changes and to formulate suitable biodiversity protection plan for
minimizing human pressures on natural goods and services.
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