MEPS 605/HORT607 Plant Biochemistry Spring Semester 2018 ## Syllabus | Credits | 3 | | | |---|--|--|--| | Lecture time | Tue and Thu, 8:00-9:15 am, HFSB 101 | | | | Instructors | Dr. Hisashi Koiwa, Department of Horticultural Sciences HFSB, Room 522 Phone: 845-5282 E-Mail: koiwa@neo.tamu.edu Office hours: by appointment | | | | Course | https://www-horticulture.tamu.edu/courses/ | | | | website | | | | | Prerequisites | BICH 410; MEPS 313 or equivalent | | | | Scope | The overall objective of the course is to provide the student with the tools to understand the fundamental metabolic pathways in plants | | | | Learning
objectives
and
outcomes | Upon successful completion of this course you will be able to: Understand and explain assimilation mechanisms for the major inorganic nutrients, such as carbon, nitrogen, sulfur. Understand and pathway and experimental approach for biosynthesis of plant natural products Design experiments and interpret results in plant biochemistry | | | | Topic area
(number of
lectures) | Photosynthesis and carbon assimilation (6) Lipid biochemistry (2) Amino acid biosynthesis (5) Natural products Terpenoids (4) Alkaloids (2) Phenolics (3) | | | | Grading | Points % Two exams (200 points each) 200 80% Student presentation 20 20% Grading scale A=100-90, B=89-80, C=79-70, D=69-60, F<59 | | | | Assigned
Readings | Recent scientific articles, which will be provided electronically or on hardcopy, will be used as the main source of reading/studying material. | | | | Suggested
textbooks | Biochemistry and Molecular Biology of Plants (Buchanan) 2015 Plant biochemistry (Caroline Bowsher, Martin W. Steer, Alyson K. Tobin) Garland Science (2008) ISBN 0815341210 tamug.3012543 | | | | Examination policy | If a student is caught cheating on an exam, the student will be given a "0" grade for that exam. Violations will be handled in accordance with the Texas A&M University regulations governing academic integrity. | | | | Attendance | The University views class attendance as the responsibility of an individual | | | | |--------------|--|--|--|--| | | student. Attendance is essential to complete the course successfully. University | | | | | | rules related to excused and unexcused absences are located on-line at | | | | | | http://student-rules.tamu.edu/rule07 | | | | | Changes in | The instructors reserve the right to change the order and content of lectures as | | | | | schedule | necessary. Exam dates may be changed by the instructors, but at least 5 days | | | | | | notice will be given. | | | | | Americans | The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute | | | | | with | that provides comprehensive civil rights protection for persons with disabilities. | | | | | Disabilities | Among other things, this legislation requires that all students with disabilities be | | | | | Act (ADA) | guaranteed a learning environment that provides for reasonable accommodation | | | | | Policy | of their disabilities. If you believe you have a disability requiring an | | | | | Statement | accommodation, please contact Disability Services, currently located in the | | | | | | Disability Services building at the Student Services at White Creek complex on | | | | | | west campus or call 979-845-1637. For additional information, visit | | | | | | http://disability.tamu.edu. | | | | | Copyrights | Please note that most handouts and supplements used in this course are | | | | | 13 3 | copyrighted. This includes all materials generated for this class, including but | | | | | | not limited to syllabi, exams, in-class materials, review sheets, and lecture | | | | | | outlines. Materials may be downloaded or photocopied for personal use only, | | | | | | and may not be given or sold to other individuals. | | | | | Scholastic | As commonly defined, plagiarism consists of passing off as one's own ideas, | | | | | Dishonesty | work, writings, etc., which belong to another. In accordance with this definition, | | | | | | you are committing plagiarism if you copy the work of another person and turn | | | | | | it in as your own, even if you should have the permission of that person. | | | | | | Plagiarism is one of the worst academic sins, for the plagiarist destroys the trust | | | | | | among colleagues without which research cannot be safely communicated. If | | | | | | you have questions regarding plagiarism, please consult the latest issue of the | | | | | | Texas A&M University Student Rules, under the section "Scholastic Dishonesty." | | | | | Aggie Honor | | | | | | Code | Students are expected to attend all studios, complete assignments on time, and | | | | | | participate fully in class discussions and group projects. Violations will be | | | | | | handled in accordance with the Texas A&M University Regulations governing | | | | | | academic integrity, which are outlined at the Aggie Honor System wed page | | | | | | http://aggiehonor.tamu.edu/. Please refer to the Texas A&M University website | | | | | | on Plagiarism and Scholastic Dishonesty for resources and a detailed | | | | | | explanation of what constitutes plagiarism. | | | | | - | 1 | | | | ## **Tentative Lecture Schedule** | Lecture # | Topic | Instructor | |-----------|--|------------| | 1 | Introduction, paper assignment | Koiwa | | 2 | Nature of light | Koiwa | | 3 | Photochemistry, Electron and energy transfer | Koiwa | | 4 | Carbon fixation | Koiwa | | 5 | Synthesis and degradation of starches | Koiwa | | 6 | Synthesis of sucrose and cellulose | Koiwa | | 7 | Ascorbic acid | Koiwa | | 8 | Nitrogen assimilation, Sulfur assimilation. | Koiwa | | 9 | Aromatic amino acids, herbicide action | Koiwa | | 10 | Branched chain amino acids, herbicide action | Koiwa | | 11 | Aspartate-derived amino acids: Biotechnologies, proline, methionine, lysine. | Koiwa | | 12 | Special lecture by Dr. Vijay Joshi (amino acid metabolomics) | Guest | | 13 | Lipid Biochemistry-1 | Guest | | 14 | Lipid Biochemistry-1 | Guest | | 15 | Student Presentation | Koiwa | | 16 | Exam 1 (40%) | Koiwa | | 17 | Terpenoids 1 | Koiwa | | 18 | Terpenoids 2 | Koiwa | | 19 | A special lecture by Dr. Timothy P. Devarenne (Terpenoid biofuel) | Guest | | 20 | A special lecture by Dr. Keerti Rathore (Gossipol biosynthesis) | Guest | | 21 | A special lecture by Dr. Pierson (Plant-
microbe interaction) | Guest | | 22 | Alkaloids 1 | Koiwa | | 23 | Alkaroids 2 | Koiwa | | 24 | Phenylpropanoids, phenolics 1: Lignins, etc | Koiwa | | 25 | Phenylpropanoids, phenolics 2: Flavonoids | Koiwa | | |----|---|-------|--| | 26 | Paper presentation/discussion | Koiwa | | | 27 | Final 40% | Koiwa | |