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Visible and near-infrared (Vis-NIR, 350–2500 nm) diffuse reflection

spectroscopy (DRS) models built from ‘‘as-collected’’ samples of solid

cattle manure accurately predict concentrations of moisture and crude

ash. Because different organic molecules emit different spectral signa-

tures, variations in livestock diet composition may affect the predictive

accuracy of these models. This study investigates how differences in

livestock diet composition affect Vis-NIR DRS prediction of moisture and

crude ash. Spectral signatures of solid manure samples (n ¼ 216) from

eighteen groups of cattle on six different diets were used to calibrate and

validate partial least squares (PLS) regression models. Seven groups of

PLS models were created and validated. In the first group, two-thirds of

all samples were randomly selected as the calibration set and the

remaining one-third were used for the validation set. In the remaining six

groups, samples were grouped by livestock diet (ration). Each ration in

turn was held out of calibrations and then used as a validation set. When

predicting crude ash, the fully random calibration model produced a root

mean square deviation (RMSD) of 2.5% on a dry basis (db), ratio of

standard error of prediction to the root mean squared deviation (RPD) of

3.1, bias of 0.14% (db), and correlation coefficient r2 of 0.90., When

predicting moisture, an RMSD of 1.5% on a wet basis (wb), RPD of 4.3,

bias of �0.09% (wb), and r2 of 0.95 was achieved. Model accuracy and

precision were not impaired by exclusion of any single ration from model

calibration.

Index Headings: Diffuse reflection spectroscopy; DRS; Visible and near-

infrared spectroscopy; Vis-NIR spectroscopy; Crude ash; Moisture;

Manure; Animal feed; Multivariate; Partial least squares; PLS; Pseudo-

independence; Particle size.

INTRODUCTION

Moisture and ash are the primary determinants of manure
quality in terms of its use as a fertilizer or fuel. Both are inert
constituents that increase the weight of manure, add little or no
nutrient value, decrease the higher heating value (HHV),
increase gasifier fouling potential, and increase waste-disposal
requirements.1 A commercial bio-energy plant recently built in
the Texas Panhandle was designed to operate using manure-
fired gasifiers and serves as a contemporary illustration of the
rationale for our work. The company’s engineering design
appears to have been predicated on maximum acceptable
moisture content and minimum fuel value benchmarks1 in
order to meet thermal efficiency standards with an engineering
factor of safety of 10%.

In previous work1,2 we confirmed that visible and near-

infrared (Vis-NIR, 350–2500 nm) diffuse reflection spectros-
copy (DRS) models built from ‘‘as-collected’’ samples of solid
cattle manure accurately predict constituents of solid cattle
manure such as moisture and crude ash and implicitly predict
total solids and organic matter in the lab and in situ.3,4

However, when analyzing a manure sample from a stock not
represented in the calibration set, Vis-NIR model predictions
may not be reliable. Moreover, prediction errors stemming
from ‘‘pseudo-independent validation’’ can result from ran-
domly selecting from non-independent samples, which can
result in an overestimation of predictive accuracy relative to
models built from independent samples.5 For example, a model
calibrated with manure samples from several different feed-
yards may perform very well, but introducing samples from a
feedyard not included in the calibration may cause the model to
fail. Livestock diets generally differ among feedyards and thus
may be an important consideration when building Vis-NIR
DRS prediction models.

Ruminant diets contain various feedstocks in different
proportions. Each feedstock is characterized by a unique
spectral signal. Vis-NIR DRS of manure has been successfully
used to detect differences in the dietary intake of domestic
ruminant animals such as free-ranging goats,6 forage-fed
sheep,7 free-ranging cattle,8 and confined, forage-fed cattle.9

There has been little research, if any, to determine how
differences in rations change the spectral behavior of manure
from confined cattle on finishing rations in feedyards.

New research is revealing that distillers grains in bovine
diets may change manure properties in several ways. For
example, increasing the fraction of wet distillers grains with
solubles (WDGS) decreases the digestibility of the rations and
has been observed to increase manure production. This is due
to the exchange of corn-derived starch for less-digestible fiber
such as arabinose, xylose, and cellulose in the distillation
process. A 20% increase of WDGS in feed rations increased
dry matter mass in manure by 20% when compared to manure
production by animals on steam-flaked corn (SFC) or dry-
rolled corn (DRC) diets.10 In the same experiment, the percent
of total nitrogen (N) and phosphorus (P) remained unchanged,
but the percent of potassium (K) increased by 5%.

Until recently, finishing diets in Texas High Plains feedyards
have been based on whole corn, dry-rolled corn, or steam-
flaked corn at inclusion rates approaching 80% of diet dry
matter (DM). Recent trends in diet composition, especially the
addition of byproduct feeds (e.g., wet corn gluten feed, gluten
feed pellets, wet or dry distillers grains), may affect the spectral
signature of the resulting manure. In addition, market forces
that affect the relative pricing of whole grains and byproducts
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may superimpose seasonality on those longer-term trends in
diet composition.

RESEARCH OBJECTIVE

This study investigates how differences in livestock diet
composition affect Vis-NIR DRS prediction of moisture and
crude ash in solid cattle manure.

EXPERIMENTAL METHODS

Sample Collection and Preparation. Manure samples were
collected by hand from the pen surfaces of an experimental
beef feedyard located in Potter County, Texas. The feedyard
contained eighteen pens, the surfaces of which were soil (n¼6)
and compacted, crushed bottom ash (n ¼ 12) from a nearby
coal-fired power plant. The soil was a Pullman clay loam,
which is a fine, mixed, superactive, thermic, Torrertic Pleustoll
and is by far the most common soil type on which feedyards in
the Southern High Plains and eastern New Mexico have been
built.11 Finishing cattle received six different diets for 97 to
124 days. Each ration was fed to two ash-surfaced pens and
one soil-surfaced pen in a randomized complete block design.
Based on Sweeten et al.,12 we expected pen surfacing to
influence the ash and moisture content and therefore noted pen
surface types. Scheme 1 presents a schematic diagram of the
pens showing surface type and cattle diets.

Samples were collected from an animal performance
experiment investigating the inclusion of wet distillers grains
with solubles in diets based on steam-flaked corn.13 The diets
differed primarily in the proportion of ‘‘concentrates’’ (ingre-
dients with high metabolic energy density), including steam-
flaked corn (SFC), dry-rolled corn (DRC), and wet distillers
grains with solubles (WDGS). The SFC and DRC were
acquired from different sources. The six diets (Table I) were
formulated to provide a minimum of 13.5% crude protein, a

minimum of 6.5% dietary fat, and a minimum Ca : P ratio of
1.5 : 1.

Each of the six treatment groups was represented by 36
samples of manure; 12 samples were collected from each of
three pens of cattle being fed the same diet. In total, 216
samples were collected in identical plastic bags. One
subsample was taken from each manure sample for conven-
tional moisture and crude ash analysis. All samples were stored
in a freezer at�12 8C for preservation, and all subsamples were
processed immediately.

Moisture was measured according to the procedure recom-
mended by University of Wisconsin Extension.14 The
subsamples were then prepared according to ASTM Standard
E1757-0115 for crude ash analysis by dry oxidation according
to ASTM Standard E1755-0116 in an ashing furnace (Heavy
Duty Hi-Temp Muffle Furnace, Model F-A1730, Thermo
Scientific, Asheville, NC) with procedural enhancements as
described by Preece et al.1

The samples were brought uniformly to room temperature
for scanning with Vis-NIR DRS. A FieldSpect 3 Hi-Res
spectroradiometer (ASD, Inc., Boulder, CO) fitted with a hand-
held probe was used to measure the sample reflectance from
350 to 2500 nm with spectral resolutions of 3 nm at 700 nm
and 10 nm at 1400 and 2100 nm. Samples were scanned
through their plastic bags. The spectrometer was calibrated
with a Spectralont white reference panel placed inside an
identical plastic bag to set reflectance to 100% and the
calibration was verified after every twenty samples.

Storage and handling caused the manure to settle within the
bags, resulting in relatively finer particles on the bottom and
coarser particles on the top. Therefore, both the top (Fine) and
bottom (Coarse) of the bags were scanned at three separate
places. The three scans were averaged, providing two
independent spectral datasets (n ¼ 216), one for the Fine scan
and one for the Coarse scan. A third dataset (n ¼ 216) was
derived from the mean of all six scans (Mean), and a fourth
data set (n ¼ 432) contained both the coarse and fine scans
(Both).

The raw spectral data were processed in four steps using
custom statistical computing code written in R17 following the
procedures of Brown18 as described in Preece et al.1 and
Sakirkin et al.2 First, because the spectrometer was equipped
with three sensors that detect reflectance over three distinct
wavelength ranges, discontinuities created by splicing the
reflectance data at the end ranges of the sensors were corrected
using the methods of Brown et al.19 Second, the three raw
reflectance scans for each sample were averaged. Third, the

TABLE I. Ration formulations from diets fed to cattle.a

Ration ingredient (% of ration as fed) SFC D15 D30 D45 D60 DRC

Wet distillers grains with solubles 0.00 15.00 30.00 45.00 60.00 0.00
Steam-flaked corn 76.37 66.68 53.44 39.50 24.45 0.00
Dry-rolled corn 0.00 0.00 0.00 0.00 0.00 76.77
Alfalfa 10.00 10.00 10.00 10.00 10.00 10.00
Cottonseed meal 3.50 0.00 0.00 0.00 0.00 3.50
Yellow grease 3.27 2.16 1.06 0.00 0.00 3.25
Limestone 1.45 1.45 1.45 1.45 1.45 1.45
Molasses 3.00 3.00 3.00 3.00 3.00 3.00
Urea 1.36 0.67 0.00 0.00 0.00 0.98
Custom supplement 1.05 1.05 1.05 1.05 1.05 1.05

a SFC¼ steam-flaked corn; D15¼ 15% wet distillers grains with solubles (WDGS); D30¼ 30% WDGS; D45¼ 45% WDGS; D60¼ 60% WDGS; and DRC¼ dry
rolled corn.

SCHEME 1. Schematic of the pen layout, surface type, and rations fed to groups
of beef cattle. Ration labels are defined in Table I.
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average values were smoothed with a weighted cubic spline
using 5 nm knots and a smoothing parameter of 0.05. The
values for every 10 nm from 350 to 2500 nm for the smoothed
raw data and for the first and second derivatives were recorded.
Finally, the first and second derivatives of reflectance were
calculated in The Unscramblert 9.720 from the 10 nm averages
of reflectance.

Crude Ash Model Creation and Validation. Partial least
squares (PLS) regression models were built on mean-centered
data using a segmented, cross-validation PLS method in The
Unscrambler software and validated with a test-set holdout.
The segments for cross-validation of the calibration were
chosen randomly and represented 4% of the calibration dataset.
The Unscrambler used a standard nonlinear iterative partial
least squares (NIPALS) algorithm and chose the number of
factors to include in each PLS model by minimizing the
residual variance of the calibration cross-validation.

The first derivative of the raw reflectance with respect to
wavelength (]R/]k) was used in the construction of all models
because we have found it to be consistently the most predictive
in characterizing manure1,2 as compared to the raw spectra and
the second derivative of the raw spectra. This behavior was
confirmed in several models for different constituents in the
current study, but we report here only the results from models
built on the first derivative of the raw reflectance.

Samples from both types of pen surfaces were included in
the calibration models to avoid errors arising from dependency
related to pen surface type. The number of PLS factors was
restricted to a maximum of four to ensure comparability
between models and prevent over-fitting. A limit of four PLS
factors was prescribed because over-fitting manifested after
four factors in some models in preliminary analysis and also in
previous work.2 The root mean square deviation (RMSD), ratio
of standard error of prediction to the root mean square

deviation, (RPD), coefficient of determination (r2), bias, and
number of PLS factors were considered in the evaluation and
comparison of model performance. Table II shows the general
guidelines suggested in the literature for reporting the
reliability and stability of calibrations for environmental or
heterogeneous samples (such as manure).

To determine the effect of particle size on Vis-NIR DRS
model performance, four models were created using results
from all samples with one-third of the samples withheld from
calibration for use as a validation set. One model was created
for each of the Fine, Coarse, Mean, and Both spectral data sets
previously described.

To investigate the spectral difference between treatments,
seven different groups of Vis-NIR DRS models were created.
In the first group, two-thirds of all samples were selected as a
calibration set and the remaining one-third was used as a
validation set. In the remaining six groups, samples were
grouped by treatment (ration). Each treatment in turn was held
out of calibrations and then used as a validation set.

RESULTS AND DISCUSSION

Ash and moisture results are presented in Table III. The
moisture content ranged from 4.3 to 28.1 with a mean of 11.5%
on a wet basis (wb). The ash content ranged from 18.1 to 44.5
with a mean of 25.7% on a dry basis (db). These results are
similar to those of samples characterized in previous studies1,2

and are typical of feedyards in the region. Additional samples
collected from the same pens at a different time were also
analyzed by a commercial laboratory. The ash content as
reported by the commercial laboratory ranged from 17.1 to
44.0, with a mean of 25.9% (db), which agrees closely with our
results.

Pen surfacing influenced the ash and moisture content of the
manure as expected. Manure collected from the soil-surfaced
pens contained 11.4 to 20.4% more ash (wb) than manure
collected from pens with a fly-ash surface. This difference
agrees with previous studies, which also reported reductions in
ash content with fly-ash surfaces.12,25 Samples from both types
of pen surfaces were included in model calibration.

The Vis-NIR DRS models built from the Coarse spectral
data set strongly outperformed the models built from Fine,
Mean, and Both spectral data sets. This result is consistent with
earlier findings2 that milling manure samples to reduce particle
sizes impaired prediction of ash. Using scans of unprocessed
manure taken from the top of the sample bags yielded
successful models with improved performance relative to
models developed in previous studies.1,2 The Coarse model
based on all treatments with a random one-third of the samples

TABLE II. General guidelines for reporting the performance of
calibrations, based on ratio of standard error of prediction to the root
mean square deviation (RPD), for environmental or heterogeneous
samples such as manure.21–24

RPD , 1.5 Model is not useful
1.5 � RPD , 2.0 Model can possibly distinguish between high and low

values
2.0 � RPD , 2.5 Model can be applied to approximate or classify
2.5 � RPD , 3.0 Model is good and can be used for quantitative

prediction
3.0 � RPD , 4.0 Model is excellent and can be used for reliable

quantitative prediction
4.0 � RPD Model is reproducible and can be used reliably in

commercial applications

TABLE III. Mean, minimum, and maximum moisture percent (wb) and crude ash percent (db) for each treatment group of manure samples.

Ration
treatmenta

Mean moisture
(% wb)

Minimum moisture
(% wb)

Maximum moisture
(% wb)

Mean ash
(% db)

Minimum ash
(% db)

Maximum ash
(% db)

SFC 7.7 4.3 14.2 26.7 21.2 40.4
D15 9.4 5.3 15.2 24.6 20.2 34.2
D30 10.2 6.5 21.1 24.5 18.1 36.2
D45 13.7 5.1 28.1 27.9 19.7 44.5
D60 16.2 8.0 26.8 26.7 20.3 41.5
DRC 11.7 5.9 25.1 24.1 18.3 34.2

a SFC¼ steam-flaked corn; D15¼ 15% wet distillers grains with solubles (WDGS); D30¼ 30% WDGS; D45¼ 45% WDGS; D60¼ 60% WDGS,; and DRC¼ dry
rolled corn.
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withheld from calibration for validation produced an RMSD of
2.5% (db), RPD of 3.1, bias of 0.14% (db), and r2 of 0.90 when
predicting crude ash. The number of factors that minimized the
residual variance of the calibration cross-validation was three,
with the first factor explaining nearly 60% of the variance in
the data. When predicting moisture the model produced an
RMSD of 1.5% (wb), RPD of 4.3, bias of�0.09% (wb), and r2

of 0.95. The number of factors minimizing the residual
variance of the calibration cross-validation was two, with the
first factor explaining nearly 40% of the variance in the data.
The RPD values indicate that both models are stable and
reliable. Previously developed models based on as-collected
(field moist, unprocessed) manure had an RMSD of 3.2 and an
RPD of 2.1 based on random validation.2

The number of significant wavelengths (p-value , 0.05) for
the crude ash calibration model was 168, while it was 194 for
moisture over a total of 214 possible wavelengths. (Spectral
endpoints 350 and 2500 nm were not included in models based
on ]R/]k.) This number is much higher than the 23 significant
wavelengths identified by Preece et al.1 in determining crude
ash in oven-dried and milled solid cattle manure adulterated
with soil and is higher than the 58 significant wavelengths
found by Sakirkin et al.2 when predicting crude ash in air-dried
manure samples. The increase in the number of significant
wavelengths may perhaps be explained by the differences in
sample moisture content between the studies. In this study the

samples were not dried and contained up to 30% more moisture
than those from the other two studies. Covalent and hydrogen
bonds associated with water molecules are spectrally active and
with increased moisture content the intensity of these bands
will be greater across the Vis-NIR DRS spectrum.26 The fact
that the number of significant wavelengths increases with
moisture content of the manure samples across the three studies
supports this explanation. In further support is the report by
Sakirkin et al.2 of improved accuracy in models that included
water bands (1390–1410 and 1890–1910 nm) compared to
those in which they were excluded. However, prediction
accuracy was unaffected when moisture was included along
with spectra as a prediction variable.

In general, Vis-NIR DRS models calibrated by holding out
samples by ration were as reliable as the model calibrated by
using samples from all treatment groups while holding out
random samples. Plots of the predicted versus measured ash
from the six models calibrated by holding out each ration in
turn are presented in Fig. 1. This figure shows an evident
grouping of samples into higher and lower ash content due to
the two pen surface types. Table IV contains summary statistics
of ash content model validations. Ash content of SFC and D45
were under-predicted, as quantified by larger biases (Table IV).
These rations may have produced manure with different ash
and moisture characteristics than the other rations (Table III),
but a plot of observed moisture and ash values versus their

FIG. 1. Predicted ash (% db) versus measured ash (% db) from six models calibrated by holding out each treatment group (ration) in turn. A linear global trend line
is shown in bold, along with a dashed one-to-one line for reference.
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respective prediction residuals revealed no trend (data not
shown). Figure 2 presents a plot of the predicted versus
measured moisture from the six models calibrated by holding
out each ration in turn. Summary statistics of moisture content
model validations are presented in Table V.

Differences in model performances between rations were
very small; the RMSD was less than 1.5% db for ash and less
than 0.7% for moisture content. The largest RMSD (which
corresponds approximately to a 95% confidence interval) was
less than 4.0% when predicting ash and less than 2.6% when
predicting moisture. These accuracies for both water content
and ash are considerably lower than the 10% engineering factor
of safety in gasifier design.

CONCLUSION

We predicted crude ash and moisture with an accuracy of

64% (db) and 63% (wb) by weight, respectively, in as-
collected (unprocessed) samples of solid cattle manure by

scanning the samples through plastic bags with a hand-held

Vis-NIR DRS probe. Withholding samples grouped by OC

source from model calibration did not impair prediction; the

differences in livestock diet composition had little effect on the

accuracy or reliability of Vis-NIR DRS models. Therefore,

based on this experiment we can reliably predict both ash and

moisture content (by mass) in solid manure, in as-collected

TABLE IV. Validation statistics of Vis-NIR DRS models predicting crude ash for each ration treatment with that treatment left out of the calibration
model, and the model calibrated by holding out random samples regardless of treatment. Root mean square error (RMSD) and ratio of the standard
deviation over the RMSD (RPD), coefficient of determination ( r 2 ), bias, and number of partial least squares (PLS) regression factors are shown.

Treatmenta SFC D15 D30 D45 D60 DRC ALL

Validation Ration Ration Ration Ration Ration Ration Random
RMSD (% crude ash db) 3.3 3.8 2.8 2.7 2.6 2.0 2.5
RPD 2.1 1.4 2.6 3.7 2.8 3.3 3.1
Bias (% crude ash db) �1.7 1.7 0.0 �1.9 0.5 1.0 0.1
PLS factors (count) 4 4 3 3 3 4 3

a SFC¼ steam-flaked corn; D15¼15% wet distillers grains with solubles (WDGS); D30¼30% WDGS; D45¼45% WDGS; D60¼60% WDGS; DRC¼dry rolled
corn; and ALL¼ all treatments.

FIG. 2. Predicted moisture (% wb) versus measured moisture (% wb) from six models calibrated by holding out each treatment group (ration) in turn. A linear
global trend line is shown in bold, along with a dashed one-to-one line for reference.
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form, from Pullman clay loam or fly-ash surfaced pens, at
feedyards feeding DRC, SFC, or WGDS-based rations.

The fact that models built from scans of coarse manure from
the upper surface of manure in bags were most reliable and
most successful has important consequences for the adaptation
of Vis-NIR DRS in commercial applications. We have shown
that Vis-NIR DRS may be convenient in situations where
immediate in situ determination of ash and/or moisture in as-is
manure is required, such as in industries using large volumes of
manure as a fuel. In these industries manure may be transported
in trucks or held in stockpiles and be subject to settling similar
to that in the manure samples in this study. The ability to scan
the surface of a load or pile and obtain a reliable result without
having to process the manure in any way is paramount to the
usefulness of the method.

In practical terms, the vast majority of feedyards in the
Texas, Oklahoma, and New Mexico region use SFC, DRC,
and/or WDGS in their rations and are located on Pullman clay
soil. The model reported herein is likely to be useful
throughout this region, which represents well over 30% of
the cattle on feed in the United States.27,28 Because the model
is unaffected by ration differences among the dominant feed
stocks, recalibration seems unnecessary when a feedyard
changes the composition of its diets. However, to expand the
geographic applicability of the model beyond the southern
High Plains and eastern New Mexico, it would be necessary to
add samples of any atypical or regionally exotic feedstocks
and/or soils to our existing calibration set.
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PLS factors (count) 2 2 2 2 2 2 2

a SFC¼ steam-flaked corn; D15¼15% wet distillers grains with solubles; D30¼30% WDGS; D45¼45% WDGS; D60¼60% WDGS; DRC¼dry rolled corn; and
ALL¼ all treatments.

APPLIED SPECTROSCOPY 1061

http://www.ingentaconnect.com/content/external-references?article=0967-0335(2007)15L.387[aid=8389818]
http://www.ingentaconnect.com/content/external-references?article=0921-4488(1995)15L.223[aid=9678633]
http://www.ingentaconnect.com/content/external-references?article=0022-0302(2000)83L.1829[aid=8389813]
http://www.ingentaconnect.com/content/external-references?article=0021-8561(2001)49L.603[aid=9678635]
http://www.websoilsurvey
http://www.r-project.org

