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EFFECTS OF SAMPLE PROCESSING ON ASH CONTENT 
DETERMINATION IN SOLID CATTLE MANURE WITH 

VISIBLE/NEAR‐INFRARED SPECTROSCOPY

S. L. P. Sakirkin,  C. L. S. Morgan,  B. W. Auvermann

ABSTRACT. Visible and near‐infrared (VisNIR, 350‐2500 nm) diffuse reflectance spectroscopy (DRS) may be a useful tool for
determining crude ash content of solid cattle manure. However, the effect of sample preprocessing protocols on the predictive
ability of the VisNIR‐DRS models is unknown. In this study we explored the effects of drying and milling on the prediction
of crude ash in feedyard manure using VisNIR‐DRS. Samples (n = 120) of beef manure from open lots were evaluated for ash
content by dry oxidation and then subjected to four preprocessing treatment protocols: oven‐dried and milled, air‐dried and
milled, oven‐dried and not milled, and air‐dried and not milled. Each treatment protocol was used to calibrate partial least
squares regression models for prediction of ash content by VisNIR‐DRS. Two thirds of the samples were randomly selected
to build calibration models, and the remaining third was used for validation. The root mean squared deviation (RMSD) and
the ratio of the standard deviation over the RMSD (RPD) for each treatment were assessed to determine the best pretreatment
protocol for ash determination of manure. The first derivative of the reflectance from air‐dried, unmilled samples consistently
generated the best predictive models with an RMSD of 5% crude ash (d.b.), an RPD of 2, and a bias of 0% crude ash (d.b.).

Keywords. Ash content, Diffuse reflectance spectroscopy, Feedyard, Manure, Multivariate, Partial least squares,
Post‐processing, Preprocessing, Regression, VNIR, VisNIR.

rimary uses for cattle manure include land
application as a fertilizer and gasification as a
biofuel. Ash, a primary determinant of manure
quality for both uses, is defined as the mass fraction

of inorganic residue remaining after dry oxidation at 575°C
±25°C relative to the oven‐dried mass (ASTM, 2007).
Contamination of manure by mineral soil particles may
increase the ash content to a point where the value of the
manure falls below both financial and net‐energetic
benchmarks. Processing manure to reduce ash is energy‐
intensive and impractical.

Producers and end users must know the ash content of
manure to evaluate its quality and economic worth. Ash
content is currently measured by standardized methods such
as dry oxidation (ASTM Standard E1755‐01) and bomb
calorimetry (ASTM Standard D5468‐02), both of which are
time‐consuming,  expensive, and strictly lab‐based
procedures. A rapid, low‐cost, and accurate means of
determining ash content of manure in the field would provide
producers and end users with a scientific basis, not only for
determining manure quality, but also for improving manure‐
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management  practices, optimizing the quality and value of
harvested manure, controlling land‐application costs, and
increasing the suitability of manure for use as a biofuel.

Recently, visible and near‐infrared (350‐2500 nm) diffuse
reflectance spectroscopy (VisNIR‐DRS) was shown to have
potential for determining crude ash in hand‐made soil/
manure mixes (Preece et al., 2009). VisNIR‐DRS is faster
(<100 ms scan‐1) than conventional ash determination, non‐
destructive,  and field‐portable, and lends itself to both
laboratory and in situ analyses for proximal or remote
sensing. In Preece et al. (2009), crude ash in proportionally
mixed samples of soil and manure was predicted within ±5%
(d.b.) of the observed ash content as determined by dry
oxidation. It is unknown how this prediction accuracy will
change in VisNIR‐DRS models created using more realistic
grab samples from feedyards.

Rapid measurements of manure ash content in situ would
dramatically  increase the speed and convenience, and reduce
the cost, of assessing manure quality. In a previous study,
homogenized,  oven‐dried, and milled manure samples were
mixed at different ratios with a single soil stock prior to being
scanned by VisNIR‐DRS (Preece et al., 2009). This study did
not test the ability of a VisNIR‐DRS model to predict crude
ash in manure samples from different sources. Further, it is
unknown what effect sample pretreatment processes, such as
milling and drying, have on these models. Pretreatment
processes increase the time and expense required for the
determination  of crude ash by VisNIR‐DRS and may impede
field measurements. This study investigated the effect of
various pretreatment protocols, such as milling vs. no milling
and air‐drying vs. oven‐drying, on the predictive ability of a
VisNIR‐DRS model. The manure samples in this study were
composed of manure collected from several different pens at
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four different feedyards, as opposed to having a binary,
artificial  composition.

Particle size and moisture content have marked effects on
the diffuse reflectance spectra of a material. By far, the most
commonly applied sample pretreatment protocols involve
oven‐drying and milling the material to be analyzed to
constrain particle size and moisture content (Kusumo et al.,
2008; Viscarra Rossel et al., 2006; Malley et al., 2005). In
soils, sediments, and manure, moisture can obscure
important features of C, N, and organic constituents
(Kooistra et al., 2003; Kusomo et al., 2008; Lobell and Asner,
2002; Malley et al., 2005; Morgan et al., 2009). Various
combinations and overtones of deformations of the O‐H bond
in water saturate the spectrum at bands near 1400 nm and
1900 nm (Bruun et al., 2005; Dagnew et al., 2004; Huang et
al., 2007; Malley et al., 2002; Malley et al., 2005; Xing et al.,
2008). However, Brown et al. (2006) found no discernable
difference in accuracy between oven‐dried and air‐dried
samples in soil characterization by VisNIR‐DRS. An
alternative to drying samples to compensate for the negative
effect of moisture content on spectral interpretation is to
delete the strong water absorption bands from the spectra
(Chang et al., 2001; Dagnew et al., 2004); however, deleting
bands risks deleting useful information.

In general, the literature suggests that smaller, more
uniformly sized particles facilitate the interpretation of
spectra and determination of chemical composition. Uniform
particles improve spectrally based interpretations because
increasing particle size heterogeneity increases the variation
in surface physical properties. This variation in particle
surfaces can affect spectral analysis (Aucott and Garthwaite,
1988). For example, particle surface properties influence
light scattering and path lengths. In soils, the smallest
particles are the most spectroscopically active (Cabassi et al.,
2008) because they contain clays and organic particles, and
the reflectance spectra of a sample with varied particle sizes
resemble the spectra of the small particles more closely than
the large (Dahm and Dahm, 2007, as cited by Cabassi et al.,
2008). However, some evidence exists that creating uniform
particle size in samples does not affect prediction accuracy
of clay in soil (Waiser et al., 2007), while a similar
experiment looking at soil organic carbon showed
improvement in prediction with more uniform particle sizes
(Morgan et al., 2009). For manure ash determination, there
are no studies reporting on the effect of sample particle size
on spectra prediction accuracies.

How particle size and ash determination in manure will
interact is unknown. It is known that transformations associated
with the second derivative of reflectance can substantially
increase the magnitude of spectral features, compensating for
the effects of particle size and increasing the predictive values
of major principal components in a regression model (Aucott
and Garthwaite, 1988). Furthermore, scanning methods can be
adapted for the effect of large, non‐uniform particles in soil,
such as by using a large (>3 cm2) scanning area (Brown et al.,
2006) or a continuous scan of streaming matter on a moving
turntable or belt. The spectrometer used in this study does not
use a turntable or belt.

RESEARCH OBJECTIVE

The overall research objective was to extend the work of
Preece et al. (2009) by comparing predictions of ash content

in grab samples of actual feedyard manure to those in samples
artificially  mixed in the laboratory by identifying the best
pretreatment  protocol and elucidating methods for reporting
model prediction accuracies. More specifically, our
objectives were to (1) quantify the effect of milling and oven‐
drying on VisNIR‐DRS predictions of crude ash content in
grab samples of feedyard manure, and (2) quantify how
altering the selection of the validation set changes prediction
accuracies of VisNIR‐DRS models.

MATERIALS AND METHODS
SAMPLE COLLECTION AND PREPARATION

Manure samples (n = 120) were collected from randomly
selected pens at four commercial cattle feedyards in October
2007. The feedyards were under independent management
and ownership and were located in the Texas counties of Deaf
Smith, Moore, and Randall. Pen capacity ranged from
approximately  100 to 250 head of cattle. Samples were
collected by hand from dry areas within the pens and bagged
separately. Each sample was hand‐mixed well to ensure
maximum homogeneity prior to being divided into five
subsamples. Table 1 presents the number of feedyards and
pens sampled, the number of samples collected, and the
number of subsamples created.

The five sets of subsamples were preprocessed as
described in table 2. Air‐dried samples were placed in open‐
topped tins in a greenhouse for 48 h, which was sufficient
time to reduce the moisture content of the samples to near
equilibrium atmospheric values. The greenhouse reached
daily temperatures of approximately 50°C. This air‐drying
procedure resulted in manure samples ranging from 4.3% to
16.1% (w.b.) moisture content, gravimetrically measured
(Hoskins et al., 2003). Oven‐dried samples were placed in
open‐topped tins in a drying oven (Tru Temp model 214300,
Hotpack Corp., Philadelphia, Pa.) for a minimum of 8 h at
105°C. Milled samples were milled in a No. 2 Wiley mill to

Table 1. Summary of the number of feedyards and pens sampled, the
number of samples collected, and the number of subsamples created.

Subsamples were used to create the four pretreatments
plus one sample for traditional laboratory analysis.

Feedyard

Pens
per

Feedyard

Samples
per
Pen

Samples
per

Feedyard

Subsamples

per
Sample

per
Feedyard

1 9 3 27 5 135
2 8 3 24 5 120
3 10 3 30 5 150
4 13 3 39 5 195

Total 40 ‐‐ 120 ‐‐ 600

Table 2. Summary of preprocessing and analytical methods
for determination of crude ash imposed on five

sets of identical subsamples of manure.

Subsample
Set[a] Milled

Drying
Method

Analytical
Method

OdMn No Oven Dry oxidation
OdMn No Oven VisNIR‐DRS
AdMn No Air VisNIR‐DRS
OdMy Yes Oven VisNIR‐DRS
AdMn Yes Air VisNIR‐DRS

[a] Od = oven dried, Ad = air dried, Mn = not milled, and My = milled.
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reduce at least 80% of the manure particles to less than
850�μm; other samples remained unmilled.

The particle size distribution was measured in a motorized
sieve shaker (Ro‐Tap model RX‐30, W. S. Tyler, Mentor,
Ohio) according to ASTM Standard C136‐06 (ASTM, 2006).
The representative mean particle size for the milled samples
was ‐8 mesh (850 μm) sieve, where a minus sign (‐) before
the mesh number indicates the particles pass through the
sieve. For comparison, the representative mean particle size
for the unmilled samples was ‐5/16 mesh (8.00 mm) sieve.

The preprocessed samples were stored in a freezer with a
maximum temperature of 0°C to preserve them until they
were scanned with the VisNIR spectrometer. One oven‐dried,
not milled (OdMn) set of samples immediately underwent
crude ash determination by dry oxidation.

Dry oxidation was performed in an ashing furnace (model
F‐A1730, Argo Thermodyne Co., Bangalore, India)
according to the procedures of Preece et al. (2009), with
reference to ASTM Standard E1755‐01 (ASTM, 2007).
Differences in ash content between the feedyards were tested
using Tukey's honestly significant differences (HSD) test in
SPSS Statistics software (SPSS, 2008). Normality of the
combustion ash values was tested using the Kolmogorov‐
Smirnov one‐sample test in SPSS Statistics (SPSS, 2008).

The four remaining sets of subsamples were brought
uniformly to room temperature from 0°C. A VisNIR
spectrometer (AgriSpec, ASD, Inc., Boulder, Colo.) was
used to measure sample reflectance in wavelengths from 350
to 2500 nm with spectral resolutions of 3 nm at 700 nm and
10 nm at 1400 and 2100 nm. Samples weighing
approximately  20 g were placed on a muglight featuring a
1.2�cm diameter scanning area illuminated by an internal
tungsten quartz halogen light source. The samples were
scanned from underneath through a Duraplan borosilicate
optical‐glass puck. Each sample was scanned three times,
rotating the puck 120° between each scan to compensate for
any remaining heterogeneity within each sample. A
Spectralon white reference panel was used in the puck to set
reflectance to 100% prior to each scanning session, and the
white reference was verified after every 25 samples.

The raw spectral data were processed in four steps using
custom statistical computing code written in R (R Foundation
for Statistical Computing, Vienna, Austria) following the
procedures of Brown (2007) and described by Preece et al.
(2009). First, because the spectrometer instrument was
equipped with three sensors that detect reflectance over three
distinct wavelength ranges, discontinuities created by
splicing the reflectance data at the end ranges of the sensors
were corrected (see Brown et al., 2006). Second, the three
raw reflectance scans for each sample were averaged. Third,
the average values were smoothed with a weighted cubic
spline using 5 nm knots and a smoothing parameter of 0.05.
Finally, the first and second derivatives of reflectance with

respect to wavelength )/and/( 22
������ rr  were computed

using the spline coefficients. The values for every 10 nm from
350 to 2500 nm for the smoothed raw data and for the first and
second derivatives were recorded. Thus, the data processing
yielded three sets of spectral data for each manure
pretreatment  protocol. The spectral data sets were 10 nm
averages of reflectance, first derivative of reflectance, and
second derivative of reflectance (Preece et al., 2009).

CRUDE ASH MODEL CREATION AND VALIDATION
Partial least squares (PLS) regression models were

developed in The Unscrambler software (CAMO, 2007) and
validated with a test‐set holdout. The calibration models
were built on mean‐centered data using a segmented cross‐
validation PLS method. The segments for cross‐validation
were randomly chosen and represented 4% of the calibration
dataset. The Unscrambler used a standard non‐linear iterative
partial least squares (NIPALS) algorithm and chose the
number of factors to include in each PLS model by
minimizing the residual variance of the calibration cross‐
validation.

To investigate potential dependence within pens and
within feedyards, three different groups of models were
created. In the first group, 1/3 of the samples were randomly
selected as a validation test set, which is a common method
of creating a validation set. In the second group of models,
samples were grouped by pen and approximately 1/3 of the
pens were randomly selected equally from each feedyard,
creating a more independent validation set. This stratified‐
random sampling design did not allow samples within a
single pen to be split between validation and calibration data
sets. Lastly, in the third group of models, all of the samples
from each feedyard were held out of the calibrations and then
used as validation sets, which were the most independent of
the three groups. This third group of models was expected to
be the most conservative estimate of prediction accuracy for
VisNIR ash prediction.

In the first group of models, 80 samples from each of the
three spectral data sets, reflectance (r), first derivative

)/( ���r , and second derivative )/( 22
��� r , were randomly

selected to comprise the calibration set. The first derivative
generally removes albedo effects and is a transformation
commonly used in VisNIR spectroscopy (Viscarra Rossel et
al., 2006). The second derivative has been shown useful to
alleviate effects of heterogeneous particle size in
spectroscopy (Aucott and Garthwaite, 1988). After
calibration,  the models were validated with the remaining 40
samples (validation set). This process was repeated five times
for each treatment using different, randomly selected
calibration and validation sets to verify the stability of the
model creation and performance. For each of the 60 models
in this first group, the software was permitted to determine
the optimal number of PLS factors. This produced a range of
2 to 13 PLS factors among the models.

The PLS function in Unscrambler chooses the number of
factors at which the prediction residuals are minimized using
the calibration data; however, when three factors were
chosen, the validation RMSD was consistently higher than
when 13 factors were chosen. The occasional selection of 13
compared to 4 or 5 factors was a numerical problem created
by the shape of the prediction residual curve; it had
undulations and local minima. Because of this consistent
instability, comparison between default models was difficult,
and the instability suggested that using 13�factors was over-
fitting. To facilitate comparison, the models were recon-
structed, but the number of PLS factors was limited to four.
Four was selected because it was the maximum number of
PLS factors among all of the models at which overfitting did
not occur.

Again, the modeling process was repeated five times for
each treatment with different, randomly selected calibration and
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validation sets to verify the stability of model creation and
performance. In addition, the models were recalculated with the
water bands (1390‐1410 and 1890‐1910 nm) removed to
determine if moisture was confounding the spectra (based on
Chang et al., 2001, and Dagnew et al., 2004). The reflectance
spectra were not used in the second and third model groups
because they consistently produced the lowest prediction
accuracies in the first modeling exercise.

In the second group of models, dependence among
samples from the same pen was examined. Samples were
grouped according to the pen from which they were
collected,  and the calibration (n = 81) and validation (n = 39)
sets contained samples from randomly chosen pens with
equal representation from each feedyard. In other words,
samples collected from the same pen were not split between
the calibration and validation sets. Further, each feedyard
was equally represented in the calibration and validation sets.
The number of PLS factors was limited to four, and eight
models were built from the first and second derivatives of
each treatment.

In the third group of models, all of the samples from each
feedyard were held out of the calibration in turn. They were
then used to validate their respective models. The four
validation sets contained 39, 24, 20, and 27 samples,
respectively. The software was permitted to determine the
optimal number of PLS factors. Thirty‐two models were built
from the first and second derivatives of each treatment.

The root mean squared deviation (RMSD), coefficient of
determination  (r2), and bias of the validation data along with
the number of PLS factors were considered in the evaluation
of model performance. To investigate spectral similarity
between the manure preprocessing treatments, biplots of the
first two principal components of the first derivatives were
created. Spectral similarities or differences between
treatments can be visually identified with a convex hull biplot
(Islam et al., 2005). Principal component decomposition of
the first derivative spectra and convex hull calculations were
performed in R (R Development Core Team, 2006).

RESULTS AND DISCUSSION
Table 3 presents the minimum, maximum, mean, standard

deviation, and skewness of measured crude ash (% d.b.) from

Table 3. Summary statistics of crude ash (% d.b.) measured by dry
oxidation from all manure samples together and by feedyard.

Statistic All

Feedyard

1 2 3 4

Minimum 19.2 19.2 22.4 23.8 22.9
Maximum 61.8 47.9 61.8 34.1 44.2

Mean 31.8 31.6 35.0 29.1 32.1
Standard deviation 7.68 7.37 11.63 3.13 6.47

Skewness 1.36 0.04 1.24 ‐0.18 0.29
Count 120 39 24 30 27

all manure samples together and by feedyard. Crude ash
content of the manure samples was normally distributed (p <
0.05), with a range of 19.2% to 61.8% (d.b.). For reference,
the average ash content of manure excreted by cattle on
standard finishing diets in the region was about 15% (d.b.)
(Auvermann et al., 2007). All samples were above this value,
indicating that they were a mixture of manure and soil, or that
the cattle were not fed a standard finishing ration. The mean
ash values between feedyards were statistically similar
except that of feedyard 2, which yielded samples significant-
ly higher in ash content than feedyard 3 (p < 0.05). The mean
95% confidence limit for the ash results determined by dry
oxidation was ±1.4%.

Table 4 presents the mean results from the first group of
models. Models built from the first and second derivatives of
the spectra yielded slightly better prediction accuracies than
the raw reflectance models in all four treatments. Prediction
error (RMSD) in all of the models ranged from less than 4%
to less than 6% ash (d.b.). This is similar to the prediction
obtained in a previous study (Preece et al., 2009) in which
crude ash was predicted within ±5% ash (d.b.) from samples
artificially  manufactured from proportionate mixtures of
composite stocks of manure and soil. The current study
maintained prediction accuracy comparable to the previous
study, despite using natural manure samples from multiple
locations. A ±5% ash (d.b.) prediction accuracy is useful for
determining manure quality in commercial applications.
Further, models built from the first and second derivatives
had similar RPD values and very low biases.

The RPD is the ratio of the standard deviation over the
RMSD and provides a numeric value for model comparison
that represents the accuracy of the models with respect to the
standard deviation of the population being predicted. General

Table 4. Mean root mean squared error (RMSDcal) and mean number of PLS factors for the calibration (n = 80) model using
five unique VisNIR‐DRS models. For the validation (n = 40), the mean RMSDval, mean relative percent difference (RPD),

and mean bias of five unique VisNIR‐DRS models for each pretreatment and post‐processing protocol are shown.

Transformation Treatment[a]
RMSDcal

(ash % d.b.)
RMSDval

(ash % d.b.) RPD
Bias

(ash % d.b.)
PLS Factors

(count)

Raw spectra

AdMn 3.6 4.0 1.9 ‐0.1 3.6
AdMy 4.1 4.6 1.7 ‐0.2 2.4
OdMn 4.8 5.7 1.3 ‐0.1 2.4
OdMy 4.0 4.3 1.8 0.1 3.8

First derivative

AdMn 3.2 3.6 2.1 ‐0.3 2.8
AdMy 3.6 4.4 1.7 ‐0.4 2.6
OdMn 4.5 5.7 1.4 ‐0.0 2.2
OdMy 3.1 4.1 1.9 ‐0.2 3.2

Second derivative

AdMn 3.2 3.6 2.1 ‐0.1 2.2
AdMy 3.4 4.9 1.8 ‐0.2 3.2
OdMn 4.5 5.6 1.4 0.1 1.8
OdMy 3.1 4.0 1.9 ‐0.2 3.2

[a] Od = oven dried, Ad = air dried, Mn = not milled, and My = milled.
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guidelines for reporting the performance of calibrations for
environmental  or heterogeneous samples (such as manure)
are based on five RPD levels (Huang et al., 2007; Malley et
al., 2005; Saeys et al., 2005):

� RPD less than 1.5 means the calibration is not useful.
� RPD between 1.5 and 2.0 means that high and low

values of the constituent being predicted can possibly
be distinguished.

� RPD between 2.0 and 2.5 means approximate
quantitative  predictions are possible.

� RPD between 2.5 and 3.0 is good or successful.
� RPD above 3.0 is excellent.
Furthermore, an RPD above 4.0 indicates that the model

is reproducible and can be used reliably in commercial
applications (Williams, 2001). However, models with an
RMSD below industry requirements, despite a low RPD, are
also useful. For example, it may be useful to classify manure
above or below an acceptable ash threshold, or into quality
classes based on ash content. In these cases, knowing the ash
value ±5% (d.b.) may be sufficient, and a VisNIR‐DRS model
that can consistently predict ash within ±4% (d.b.) is
potentially useful.

Among the different pretreatment methods, the AdMn
samples had the best prediction accuracies, while the OdMn
samples had the worst prediction accuracies, with an increase
in RMSD of almost 2.0% ash (d.b.) regardless of the data
post‐processing method. Oven‐drying reduced the prediction
accuracy among the samples that were not milled. In contrast,
oven‐drying reduced the prediction accuracy much less (less
than 0.5% ash, d.b.) on models based on milled samples.
Based on the RMSD values, milling reduced accuracy in air‐
dried samples by approximately 1.0% ash (d.b.) and
improved prediction in oven‐dried samples by approxi-
mately 1.5% ash (d.b.). Evidently, oven‐drying decreased the
prediction accuracy more strongly than milling, and clearly
changed the spectral properties of the sample (fig. 1). The
effect of oven‐drying may be a result of reducing the number
of organic carbon and water associated bonds (C‐O, C‐H),
which are spectrally active (Williams, 2001).

Eliminating the water bands (1390‐1410 and 1890‐
1910�nm) slightly increased prediction error in all AdMn
models by less than 1% crude ash (d.b.). Eliminating the

= AdMn
= AdMy
= OdMn
= OdMy

Figure 1. Distribution of samples for the first derivative of spectra from
four different treatments in the convex hull biplot of principal
components 1 and 2.

visible range (350‐1400 nm) also slightly increased
prediction error in all AdMn models by less than 1% crude
ash (d.b.). These results are inconsistent with other studies
that found improvement in prediction accuracy for soil
constituents with the elimination of water bands and/or
wavelengths in the visible range (Chang et al., 2001; Dagnew
et al., 2004). Manure has a tendency to be hygroscopic at the
molecular level (despite being hydrophobic on a macro
level), resulting in a greater proportion of adsorbed water as
opposed to water in the vapor or free phase. Therefore,
adsorbed water may contribute positively to spectral
interpretation.  Results reported by Lobell and Asner (2002)
support this idea; they found that changes in reflectance in the
400 to 1100 nm range were caused solely by changes in
relative refractivity of water adsorbed to particle surfaces,
and changes in pore space water had little effect on
reflectance.

Spectral similarities or differences between treatments
can be visually recognized with a convex hull biplot (Islam
et al., 2005). The distribution of the samples within the biplot
area also provides a strong indication of their degree of
variation. Figure 1 presents a convex hull analysis (Eddy,
1977) of the first derivatives of the reflectance for each
treatment in the biplot of principal components 1 and 2. This
chart offers a striking visual comparison of the four
treatments and supports the conclusions that there is no
compelling evidence to support milling samples and that the
spectra of oven‐dried samples were very different from those
of air‐dried samples.

Because three samples of manure were collected from
each pen, samples from any single pen may have been
represented in both the calibration and validation sets. To
eliminate the potential for pen‐wise pseudo‐independence, a
second group of models was constructed with stratified‐
random sampling in which all samples from one pen were
grouped together and used either in the calibration or
validation set. Results for this group of models are presented
in table 5. The prediction accuracy of these models was
approximately  1% crude ash (d.b.) lower than that of the first
group of models, in which samples were not grouped by pen.
This result indicates that some pen‐wise dependency existed
among the samples, and that the first group of models
overestimated prediction accuracy by approximately 1%
crude ash (d.b.). First and second derivative models
performed similarly, and the biases were very small (‐0.4 to
0.1). The AdMn treatment yielded RMSD and RPD values of
4.7 and 2.3, respectively, using first derivatives and 4.6 and
2.4, respectively, using second derivatives. Again, the RMSD
of VisNIR‐DRS for predicting crude ash in AdMn is within
the accepted industry tolerance of ±5%. Plots of the predicted
versus measured ash content from models using stratified‐
random selection of calibration and validation sets and based
on the first derivative of all treatments are presented in
figures 2 through 5.

Results for the third group of models are presented in
table�6. Prediction accuracy decreased by approximately 2%
ash (d.b.) compared to random validation when whole‐
feedyard hold‐out validation was used. The average (n = 4)
RMSD and RPD for the AdMn treatment were 4.3 and 1.7,
respectively, using first derivatives and 4.6 and 1.5,
respectively, using second derivatives. The prediction
accuracies of the whole‐feedyard hold‐out validations were
lower than those of the random and random‐stratified hold‐
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Table 5. Root mean squared error (RMSDcal) and number of PLS factors for the calibration (n = 81) VisNIR‐DRS model. For
the validation (n = 39), the mean RMSDval, relative percent difference (RPD), and bias of VisNIR‐DRS models created using
stratified‐random selection of calibration and validation sets for each pretreatment and post‐processing protocol are shown.

Transformation Treatment[a]
RMSDcal

(ash % d.b.)
RMSDval

(ash % d.b.) RPD
Bias

(ash % d.b.)
PLS Factors

(count)

First derivative

AdMn 2.4 4.7 2.3 ‐0.2 3
AdMy 3.1 6.1 1.8 ‐0.6 4
OdMn 3.9 6.9 1.6 ‐1.1 2
OdMy 2.9 6.6 1.6 ‐1.2 2

Second derivative

AdMn 2.1 4.6 2.4 0.2 4
AdMy 2.8 5.9 1.8 0.9 3
OdMn 3.9 7.1 1.5 ‐0.8 2
OdMy 2.5 6.2 1.7 1.7 3

[a] Od = oven dried, Ad = air dried, Mn = not milled, and My = milled.

Figure 2. Predicted ash (% d.b.) versus measured ash (% d.b.) from the
validation of the AdMn model using stratified‐random selection of the
calibration and validation sets and using first derivative. A linear trend
line is shown in bold, along with a dashed 1:1 line for reference.

Figure 3. Predicted ash (% d.b.) versus measured ash (% d.b.) from the
validation of the AdMy model using stratified‐random selection of the
calibration and validation sets and using first derivative. A linear trend
line is shown in bold, along with a dashed 1:1 line for reference.

out validations. Increased error should be expected when
using a spectral model to predict ash for a feedyard not
included in the model calibration. First and second
derivatives yielded similar prediction accuracies. Again, the
AdMn treatment outperformed all other treatments, this time
in 85% of the model comparisons. Biases ranged from ‐6 to
4 and were consistent with feedyard, regardless of treatment,
confirming that some dependency existed between samples
from within the same feedyard.

Figure 4. Predicted ash (% d.b.) versus measured ash (% d.b.) from the
validation of the OdMn model using stratified‐random selection of the
calibration and validation sets and using first derivative. A linear trend
line is shown in bold, along with a dashed 1:1 line for reference.

Figure 5. Predicted ash (% d.b.) versus measured ash (% d.b.) from the
validation of the OdMy model using stratified‐random selection of the
calibration and validation sets and using first derivative. A linear trend
line is shown in bold, along with a dashed 1:1 line for reference.

PLS factors were unrestricted when the whole‐feedyard
hold‐out models were computed. The number of PLS factors
among models built from the AdMn treatment ranged from
2 to 4, with an average (n = 4) of 2.8, using first derivatives
and from 2 to 4, with an average (n = 4) of 3.3, using second
derivatives.  In contrast, PLS factors in models based on the
remaining three treatments ranged from 2 to 9 using first
derivatives and from 2 to 8 using second derivatives. This
indicates that the spectral variation was adequately described
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Table 6. Root mean squared error (RMSDcal) and mean number of PLS factors for the VisNIR‐DRS model calibration. For the validation
(RMSDval), ratio of the standard deviation over the RMSD (RPD), and bias of VisNIR‐DRS models using whole‐feedyard

hold‐out selection of calibration and validation sets for each pretreatment and post‐processing protocol are shown.

Transformation Holdout Treatment[a]
Cal.
(n)

Val.
(n)

RMSDcal
(ash % d.b.)

RMSD
(ash % d.b.) RPD

Bias
(ash % d.b.)

PLS Factors
(count)

First
derivative

Feedyard 1

AdMn 81 39 2.2 5.6 1.3 2.5 4
AdMy 81 39 2.3 5.4 1.4 0.7 7
OdMn 81 39 4.5 6.1 1.2 2.7 2
OdMy 81 39 1.9 7.2 1.0 4.4 6

Feedyard 2

AdMn 96 24 3.1 4.5 2.6 1.6 3
AdMy 96 24 2.8 6.6 1.8 0.0 7
OdMn 96 24 3.6 7.9 1.5 2.8 3
OdMy 96 24 3.7 6.1 1.9 1.3 2

Feedyard 3

AdMn 100 20 3.3 3.4 0.9 ‐1.5 2
AdMy 100 20 3.8 5.0 0.6 1.7 5
OdMn 100 20 5.1 3.1 1.0 0.6 2
OdMy 100 20 2.9 5.0 0.6 ‐2.7 5

Feedyard 4

AdMn 93 27 3.3 3.7 1.8 ‐2.3 2
AdMy 93 27 3.1 2.2 3.0 0.2 9
OdMn 93 27 4.5 7.0 0.9 ‐5.5 2
OdMy 93 27 2.9 5.0 0.6 ‐3.7 5

Second
derivative

Feedyard 1

AdMn 81 39 2.3 5.0 1.5 2.2 4
AdMy 81 39 2.4 6.8 1.1 3.1 5
OdMn 81 39 4.5 5.4 1.4 1.8 2
OdMy 81 39 2.5 7.1 1.0 3.2 5

Feedyard 2

AdMn 96 24 2.8 4.8 2.4 2.9 3
AdMy 96 24 2.3 6.5 1.8 3.3 8
OdMn 96 24 3.5 8.7 1.3 3.0 3
OdMy 96 24 3.2 6.6 1.8 3.0 3

Feedyard 3

AdMn 100 20 3.5 3.1 1.0 ‐1.1 2
AdMy 100 20 4.0 3.9 0.8 ‐1.7 5
OdMn 100 20 5.1 3.0 1.1 1.2 2
OdMy 100 20 3.9 4.2 0.7 ‐2.1 2

Feedyard 4

AdMn 93 27 2.7 5.4 1.2 ‐4.4 4
AdMy 93 27 3.9 5.1 1.3 ‐4.3 2
OdMn 93 27 4.5 7.3 0.9 ‐6.1 2
OdMy 93 27 4.1 4.8 1.4 ‐3.2 2

[a] Od = oven dried, Ad = air dried, Mn = not milled, and My = milled.

with fewer PLS factors in the AdMn treatment, and further,
that the AdMy, OdMn, and OdMy treatments were more
prone to overfitting or had more noise in the spectral data.

Samples collected at feedyard 3 were lower in ash content,
and had less variance than samples from the other feedyards.
When samples from feedyard 3 were held out of model
calibration and were in turn predicted, those models yielded
lower RMSD values. In contrast, when samples from
feedyard 2 were held out and used as a validation set, those
models produced higher RMSD values. Feedyard 2 had
slightly higher average ash content and much higher variance
than the other feedyards. Comparable observations were
made in other studies (Brown et al., 2005; Waiser et al., 2007;
Morgan et al., 2009). Specifically, Brown et al. (2005)
applied first‐derivative modeling to similar soils from six
different sites. Using samples from all of the sites in both the
calibration and validation sets produced good models.
However, when samples from one field were predicted with
models calibrated with samples from the remaining fields,
three of the models failed. Brown concluded that pseudo‐
independent validation, which results from randomly
selecting from non‐independent samples, can result in an

overestimation of predictive accuracy relative to models
validated with independent samples. With regard to feedyard
manure, pseudo‐independency may result from dependence
between samples from the same feedyard and the same pen.

The software identified 58 wavelengths as significant (p�<
0.05), and they are listed in table 7. Ten were located in the
visible range (350 to 700 nm), 30 in the IR‐A near‐infrared
range (700 to 1400 nm), and 18 in the IR‐B near‐infrared
range (1400 to 2500 nm).

Table 7. Significant wavelengths (p < 0.05) of a VisNIR‐DRS
model using stratified‐random selection of calibration

and validation sets for the AdMn treatment.
Visible Range
(350‐700 nm)

IR‐A Range
(700‐1400 nm)

IR‐B Range
(1400‐2500 nm)

530‐540 710‐820 1410‐1460
580‐640 970 1540

700 1140‐1160 1560‐1570
1180‐1240 1680‐1720
1320‐1370 1740
1390‐1400 1760

2020‐2030
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CONCLUSION
Crude ash in solid cattle manure was most accurately

predicted by VisNIR‐DRS using models built from scans of
samples with a minimum of preprocessing, such as air‐dried
samples that were not milled. Furthermore, accuracy improved
modestly when all wavelengths were considered in the models,
including water bands and the visible region (by less than 1%
ash, d.b.). Crude ash content was predicted with an accuracy of
±5% (d.b.) of the observed ash content as determined by dry
oxidation. The performance of models based on unprocessed
samples was better by 1% to 2% ash (d.b.) when compared to
processed samples, and similar to the prediction obtained in a
previous study (Preece et al., 2009).

That unprocessed manure samples yield good VisNIR‐
DRS predictive models implies that there is potential for
rapid, accurate, in situ analysis with portable spectrometers.
This convenience increases the usefulness of VisNIR‐DRS as
a tool for determining manure quality on a commercial scale.
This practical use can be taken advantage of by commercial
manure producers and end users.

The estimated prediction accuracies of the VisNIR models
decreased when the models were validated using stratified‐
random and whole‐feedlot validation sets. Therefore, it is
important to consider the assumptions under which predic-
tion accuracy is estimated. If a commercial application using
VisNIR to rapidly quantify crude ash in feedlot manure is
developed, then care must be taken when introducing new
samples that are not represented in the calibration data.
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