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DETERMINATION OF ASH CONTENT IN SOLID CATTLE

MANURE WITH VISIBLE NEAR‐INFRARED

DIFFUSE REFLECTANCE SPECTROSCOPY

S. L. Preece,  C. L. S. Morgan,  B. W. Auvermann,  K. Wilke,  K. Heflin

ABSTRACT. Visible and near‐infrared (VisNIR, 350‐2500 nm) diffuse reflectance spectroscopy (DRS) is increasingly being
used to quantify constituents of organic matter both in the lab and in situ. However, it is unknown if DRS can be utilized as
a tool for determining crude ash content of solid cattle manure. Ash content is a significant contributor to the suitability and
value of manure for use both as a biofuel and soil fertilizer, but conventional ash analysis is time‐consuming and
labor‐intensive. In this study, we explored the feasibility of VisNIR‐DRS for the rapid prediction of ash content in solid manure
from beef feedyards in the southern High Plains. Proportionally mixed samples of soil and manure (n = 201) were evaluated
for ash content by conventional analysis and then used to calibrate a statistical model for prediction of ash content by
VisNIR‐DRS based on multivariate partial‐least squares regression and random test‐set validation. Two thirds of the samples
were randomly selected to build a calibration model, and the remaining third was used for validation. The coefficient of
determination (r2), root mean squared deviation (RMSD), and ratio of prediction to standard deviation (RPD) were calculated
to assess the prediction model. The prediction model had an r2 of 0.94, an RMSD of 5% ash (d.b.), and an RPD of 4. The
VisNIR‐DRS model successfully predicted crude ash content within ±5% of the observed ash content (d.b.) as determined
by dry oxidation using the accepted ASTM standard E1755‐01.

Keywords. Ash content, Diffuse reflectance spectroscopy, Dry oxidation, Feedlot, Feedyard, Manure, Partial least squares,
PLS, Regression, VNIR, Visible near‐infrared, VisNIR.

anure is one of many biofuels and alternative
energy sources being considered as a result of
recent federal legislation, such as the Renew‐
able Fuel Standard (RFS) of the 2005 Energy

Policy Act, and other proposals that aim to increase con‐
sumption of biofuels. When not used as a biofuel, manure is
land applied as a fertilizer. Manure quality for both fertilizer
and fuel depends primarily on the ash and moisture content.
Ash is defined as the mass fraction of inorganic residue re‐
maining after dry oxidation at 575°C ±25°C relative to the
oven‐dried mass (ASTM, 2007). Moisture is defined as the
mass fraction of water removed from a sample by drying at
50°C for 16 h relative to the original sample mass as collected
(Hoskins et al., 2003).

Both ash and moisture are inert constituents that increase
the weight of manure and composted manure while adding
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little or no nutrient value (Auvermann, 1999). Since trans‐
portation costs are usually based on mass and distance
hauled, ash and moisture reduce manure's net value to the end
user. When manure is used as fertilizer, the adverse impact of
ash and moisture is primarily economic, but when manure is
used as a biofuel, the adverse economic consequences of high
ash are made worse by the (1) increased fouling potential and
(2) increased ash‐disposal requirements (Auvermann et al.,
2007). Moreover, thermochemical conversion processes are
typically designed on the basis of a priori specifications for
feedstock quality, which often include minimum thresholds
for the feedstock's higher heating value (HHV). For example,
a manure‐fired, commercial ethanol plant in Hereford, Tex‐
as, has established a minimum acceptable fuel value (MAFV)
of 6.41 MJ kg-1 with a maximum acceptable moisture content
(MAMC) of 20% wet basis (Auvermann et al., 2007).

Moisture and ash present very different management chal‐
lenges for livestock producers wishing to deliver high‐
quality manure as a biofuel feedstock. Within practical
limits, moisture contamination is reversible: the moisture
deficit in the southern High Plains facilitates passive drying
during most of the year, and during wet weather patterns, par‐
tial thermophilic composting is a tactical option to accelerate
drying. In contrast, once manure is contaminated with soil
particles, mechanical means of removing the ash may be pro‐
hibitively expensive in both financial and net‐energetic
terms. A low‐cost, accurate, and robust means of determining
ash content in the field would provide researchers, cattle
feeders, and end users with a scientific basis for improving
manure‐management  practices, optimizing the quality and
value of harvested manure, controlling land‐application
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costs, and increasing the suitability of manure for use as a bio‐
fuel.

Visible near‐infrared and near‐infrared diffuse reflectance
spectroscopy (VisNIR‐DRS, NIR‐DRS) have been in use for
30 years as a means of measuring organic constituents in vari‐
ous commodities such as feed, pharmaceuticals, petrochemi‐
cals, and food for human consumption (Williams and Norris,
2001). More recently, VisNIR‐DRS has proven to be useful
in quantifying soil constituents (Goetz et al., 2001; Udelho‐
ven et al., 2003; Brown et al., 2005; Waiser et al., 2007), ana‐
lyzing nutrients in beef, dairy, and poultry solid manures
(Kemsley et al., 2001; Reeves and Van Kessel, 2000), analyz‐
ing liquid manure slurries (Malley et al., 2002; Sørensen et
al., 2007), and measuring biological activity in agricultural
soils (Reeves, 2001). Some studies successfully used
VisNIR‐DRS to determine carbon, total nitrogen, ammonia‐
cal nitrogen, and biological activity in animal manures
(Reeves, 2001; Kemsley et al., 2001; Malley et al., 2002).

VisNIR‐DRS is faster (<100 ms scan-1) than conventional
ash determination methods such as dry oxidation (ASTM
Standard E1755‐01) or bomb calorimetry (ASTM Standard
D5468‐02). Spectroscopy is a non-destructive technique and
field-portable, which lends well to both laboratory and in situ
analyses for proximal sensing. Consequently, it has great po‐
tential for use in beef and dairy operations wherever an eco‐
nomic premium can be realized for incremental
improvements in either fuel or nutrient density.

There has been little research on the determination of
crude ash in manure by spectroscopy. Mineral constituents
may be predicted by VisNIR‐DRS if they are bound to or cor‐
related with organic constituents (Malley et al., 2002; Ye et
al., 2005), but attempts to determine some individual mineral
constituents (such as K, Ca, Zn, and Mg) in soil and manure
have not been successful (Reeves, 2001; Malley at al., 2002;
Udelhoven et al., 2003; Ye et al., 2005; Saeys et al., 2005;
Sørensen et al., 2007). Saeys et al. (2005) speculated that the
poor prediction for some individual minerals derives from
their lack of spectral activity in the VisNIR spectral range,
and also because their prediction relies entirely on their cor‐
relations to compounds with spectrally active bonds (C‐H,
O‐H, or N‐H). Silica in soils is transparent to VisNIR‐DRS,
and soils low in organic matter have been difficult to charac‐
terize by VisNIR‐DRS (Reeves, 2001). Asai et al. (1993) de‐
termined crude ash in dairy manure using multivariate
regression on raw reflectance data at eight wavelengths
(1680, 1778, 1818, 1940, 1982, 2208, 2180, and 2310 nm).
Although Asai et al. (1993) characterized the predictive mod‐
el as “highly precise,” they cautioned that more wavelengths
were required to satisfactorily predict crude ash content in
manure.

RESEARCH OBJECTIVES
The goal of this study was to evaluate VisNIR‐DRS as a

means to quantify the crude ash content of manure, using
ASTM Standard E1755‐01 as the reference method. Objec‐
tives were to (1) develop a VisNIR‐DRS model for the predic‐
tion of crude ash in solid cattle manure, (2) determine the
accuracy of the predictive model, and (3) assess the practical
feasibility of VisNIR‐DRS for industrial and agricultural ap‐
plications.

MATERIALS AND METHODS
SAMPLE COLLECTION AND PREPARATION

We prepared a master set (n = 201) of manure samples to
represent the full range of ash content likely to be encoun‐
tered in the cattle‐feeding regions of the southern High
Plains. Low ash manure was collected and then adulterated
with predetermined amounts of mineral soil to produce the
sample set, which was subsequently divided into two subsets:
one for model calibration (“calibration set”) and one for mod‐
el validation (“validation set”).

The manure stock was a composite of individual samples
collected by hand from randomly selected pens at three com‐
mercial feedyards in October 2007. The feedyards were un‐
der independent ownership and were located in the counties
of Deaf Smith and Randall, Texas. Individual samples were
collected by hand from dry areas within the pens. These sam‐
ples were thoroughly hand‐mixed together during collection
to homogenize them.

The soil stock was a composite of samples collected at
depths between 15 to 30 cm from a rangeland field located
8�km (5 miles) northeast of Canyon, Texas, in Randall
County. The soil was a Pullman clay loam (fine, mixed, su‐
peractive,  thermic, Torrertic Paleustoll) and is, by far, the
most common soil type on which feedyards in the Texas Pan‐
handle have been built (WSS, 2007). The soil was also thor‐
oughly hand‐mixed during collection for homogenization.

After additional mixing and coarse milling in a No. 2
Wiley mill, both the soil and manure stocks were spread sepa‐
rately to dry for 48 h in a greenhouse, which reached average
daily temperatures of approximately 60°C. After drying,
both stocks were separately hand‐mixed again and then
ground and sieved to a particle size of less than 2 mm to im‐
prove the repeatability of DRS scans (Kemsley et al., 2001;
Malley et al., 2002).

Each of the soil and manure stocks was hand‐mixed for a
fourth time during the milling process to ensure maximum
homogeneity and were oven‐dried for 24 h at 70°C. Ash anal‐
ysis was conducted by conventional means in an ashing fur‐
nace (model F‐A1730, Argo Thermodyne Co., Bangalore,
India) according to ASTM Standard E1755‐01 (ASTM,
2007). The ash contents of the soil and the manure stocks ac‐
cording to the ASTM method were 95% and 32% (d.b.), re‐
spectively. This range represents the range of ash content in
manure stocks found in feed yards. As a reference value, the
average ash content of manure as excreted by cattle on stan‐
dard finishing diets in the region was about 15.2% (d.b.) in
a 12‐feedyard, manure‐sampling survey in 2002 (Auvermann
et al., 2007).

CREATION OF TARGETED ASH SAMPLE SET
A master set of 201 samples (“targeted sample set”) was

assembled, with targeted ash contents evenly distributed be‐
tween 32% and 95% by mass (d.b.). The interval in ash con‐
tent between successive targeted samples was 0.31% (d.b.).
Each sample was created by mixing the soil and manure
stocks at the appropriate mass ratios to obtain a targeted ash
content. Mixture components were weighed on an electronic
balance (model PE3600, Mettler‐Toledo International, Inc.,
Zurich, Switzerland) accurate to 0.01 g. Because of differ‐
ences between the two stocks' handling characteristics, the
practical accuracy was on the order of 0.1 g. The target mass
for each mixed sample was 200 g.
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DRY OXIDATION
Three subsamples of each targeted sample were analyzed

for crude ash by dry oxidation at 575°C ±25°C. Subsamples
were prepared for ashing according to ASTM Standard
E1756 by drying at 105°C for a minimum of 8 h in a drying
oven (model V‐31‐2, Despatch Industries, Minneapolis,
Minn.). The crucibles containing the samples were placed in
a muffle furnace (model 650‐126, Fisher Scientific, Wal‐
tham, Mass.) programmed for a four‐stage oxidation se‐
quence as follows:

1. An initial ramp rate of 10°C min-1 to 250°C.
2. A 30 min soak period at 250°C.
3. A ramp rate of 0.5°C min-1 to 575°C.
4. A soak period of 8 h (at 575°C).
The duration of the dry oxidation procedure from the ini‐

tial ramp to the end of the last soak, plus a cooling period to
return the oven to below 200°C, was approximately 20 h.
Samples were then weighed on the electronic balance.
Single‐operator precision was ±5% of the mean ash content.

VISNIR‐DRS
The targeted sample set was brought uniformly to room

temperature from 2°C and scanned from underneath through
a Duraplan borosilicate optical‐glass puck containing a 20 g
subsample. Each sample was scanned three times, rotating
the puck 120° between each scan to compensate for any re‐
maining heterogeneity within each sample. The VisNIR
spectrometer (AgriSpec, ASD, Inc., Boulder, Colo.) mea‐
sured the reflectance in wavelengths from 350 to 2500 nm
with spectral resolutions of 3 nm at 700 nm and 10 nm at 1400
and 2100 nm. A scanning platform (Muglight, ASD, Inc.),
featuring an internal tungsten quartz halogen light source and
a platform through which the halogen light is projected, was
used to scan a 1.2 cm diameter spot on each sample. A Spec‐
tralon white reference panel was used in the puck to set re‐
flectance to 100% prior to each scanning session, and the
white reference was verified after every 25 samples. For
quality assurance, seven Spectralon calibration standards
were scanned before and after each soil‐scanning session.
The standards had reflectance values of 99%, 80%, 60%,
40%, 10%, 5%, and 2%.

The raw spectral data were processed in four steps using
custom statistical computing code written in R (R Develop‐
ment Core Team, 2006) following the procedures of Brown
et al. (2006), as follows. First, because the spectrometer in‐
strument is equipped with three sensors that detect reflec‐
tance over three distinct wavelength ranges, any
discontinuities created by splicing the reflectance data at the
end ranges of the sensors were corrected (see Brown et al.,
2006). Second, the three raw reflectance scans for each sam‐
ple were averaged. Third, the average values were smoothed
with a weighted cubic spline using 5 nm knots and a smooth‐
ing parameter of 0.05. Finally, the first and second deriva‐
tives of reflectance with respect to wavelength (�r/�� and
�2r/��2) were computed using the spline coefficients. The
values for every 10 nm from 350 to 2500 nm for the smoothed
raw data and for the first and second derivatives were re‐
corded.

Partial least squares (PLS) regression models were devel‐
oped using The Unscrambler software (CAMO, 2007) for
multivariate  statistical analysis and validated with a test‐set
holdout. For each of the three spectral data sets (raw reflec‐

tance r, �r/��, and �2r/��2), 135 samples were randomly se‐
lected to comprise the calibration set. After calibration, the
model was validated against the remaining 66 samples,
which comprised the validation set. Statistical validation
with independent manure samples was not performed. The
root mean squared deviation (RMSD), coefficient of deter‐
mination (r2), and ratio of prediction to standard deviation
(RPD) were calculated to evaluate model performance (Mal‐
ley et al., 2002; Waiser et al., 2007).

RESULTS AND DISCUSSION
The calibration models built from the raw reflectance

data, first derivative of the raw reflectance data, and second
derivative were all somewhat similar, as shown by the r2 val‐
ues of the calibration models: 0.91, 0.92, and 0.91, respec‐
tively. A calibration model using VisNIR to predict ash
content in fishmeal reported an r2 value of 0.89, which is sim‐
ilar to and a bit less than our ash content results (Cozzolino
and Murray 2004). Though the average ash content of the fish
meal was much lower (1.8%) than the manure samples in this
research, and ash is not expected to show absorbance in the
NIR region, VisNIR DRS seems to be consistent in predicting
ash content in organic substances.

Since the first derivative calibration model outperformed
the reflectance and second derivative models, the following
results focus on the first derivative of the raw reflectance data
(�r/��). The calibration model yielded an RMSD of 5% ash
(d.b.), which means that roughly two‐thirds of future VisNIR‐
DRS predictions were expected to lie within 5% ash (d.b.)
(fig. 1). The RPD of the PLS regression calibration model
was 4. An RPD value of 4 indicates that the calibration model
is reliable and reproducible. According to Williams (2001),
an RPD value of 4 indicates that VisNIR spectroscopy can be
used as a reliable screening tool in commercial applications.

Validation by a test set of 66 randomly selected hold‐out
samples yielded an RMSD of 5% (d.b.) as well. The coeffi‐
cient of determination (r2) was 0.94, and the RPD was 4.
Based on the RMSD, the accuracy of the VisNIR‐DRS pre‐
diction model is as good as that of dry oxidation methods. A
plot of the predicted versus measured ash content of the val‐
idation data set is presented in figure 2. Comparison of the
one‐to‐one line to the regression line indicates little bias in
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Figure 1. Predicted versus measured ash content from the calibration
VisNIR‐DRS model (n = 135) for predicting crude ash % (d.b.) in solid
cattle manure. Comparison of the one‐to‐one line to the regression line in‐
dicates little bias in the model.
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Figure 2. Predicted versus measured ash content from the validation
VisNIR‐DRS model (n = 66) for predicting crude ash % (d.b.) in solid
cattle manure. Comparison of the one‐to‐one line to the regression line in‐
dicates little bias in the model.

the model. Although our RPD value of 4 represents validation
used with non‐independent samples, the high RPD is encour‐
aging, and the result establishes a basis for continuing further
tests using VisNIR detection.

The number of significant wavelengths (p‐value < 0.05)
for the calibration model was 23, with 7 in the visible range
(350 to 700 nm), 4 in the IR‐A near‐infrared range (700 to
1400 nm), and 12 in the IR‐B near‐infrared range (1400 to
2500 nm) using two PLS factors . Table 1 presents the signifi‐
cant wavelengths in each of those three spectral ranges. The
number of significant wavelengths found in this research was
much fewer than reported by Morgan et al. (2009), where 114
significant wavelengths were identified in a VisNIR‐DRS
model used to determine organic carbon (OC) in ground and
dried soil samples. Henderson et al. (1992) reported signifi‐
cant wavelengths of 1955‐1965, 2215, 2265, 2285‐2295, and
2315‐2495 in which soil reflectance responded to OC content
across a variety of soil parent materials. Within soils of simi‐
lar parent material, Henderson et al. (1992) reported signifi‐
cant wavelengths of 405‐1055, 1075, 1115, 2325, 2375, 2425,
and 2445‐2485. Henderson et al. (1992) determined signifi‐
cant wavelengths using the Tukey method of multiple means

Table 1. Significant wavelengths in the predictive VisNIR‐DRS
model for predicting crude ash % (d.b.) in solid cattle manure.

350 to 700 nm 700 to 1400 nm 1400 to 2500 nm

350 1150 1790
360 1190 1810
390 1330 1880
410 1400 2120
430 2130
480 2140
630 2210

2330
2340
2410
2480
2500

comparison at a probability level of 0.01. The ranges of sig‐
nificant wavelengths reported by Henderson et al. (1992) and
Morgan et al. (2009) are similar to those found in this re‐
search. Morgan et al. (2009) reported using six to eight PLS
factors, while our models used only two PLS factors. The re‐
duced number of factors in this research is likely a result of
two causes. First, this data set was not independent because
the scanned samples were all created from one mixed manure
and soil source; hence, the PLS model was much simpler.
Second, and perhaps more significantly, the organic carbon
contents of the manure samples ranged from 5% to 60%,
while the organic carbon content of mineral soils ranges from
0% to 12.5%. The majority of mineral soils are usually under
3% organic carbon. Therefore, the organic carbon signatures
in mineral soils are much weaker and more difficult to recog‐
nize using spectroscopy, requiring more PLS factors for pre‐
diction purposes.

Figure 3 presents the significant wavelengths indicated as
vertical lines superimposed over a graph of the first deriva‐
tive with respect to wavelength of an example reflectance
wave in reciprocal picometers (1 pm = 10-12 m). The sensor
splices can clearly be observed at wavelengths 1000 and
1800�nm, which do not correspond with significant wave-
lengths.

Figure 3. Significant wavelengths from the VisNIR‐DRS predictive model for crude ash % (d.b.) indicated as vertical lines superimposed over a graph
of the first derivative with respect to wavelength of an example reflectance wave of solid cattle manure.
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CONCLUSION
Using 201 manure samples with different proportions of

ash content, it was possible to determine the crude ash
content of oven‐dried and milled solid cattle manure by
VisNIR‐DRS with an RMSD of 5% (d.b.) of the observed ash
content as determined by dry oxidation. This degree of
accuracy is useful for quantifying the quality of manure for
use either as a fertilizer or fuel.

In this study, VisNIR‐DRS could determine the crude ash
content of solid cattle manure as accurately as dry oxidation.
These results warrant more investigations that test the
robustness of this method for rapid ash determination in
feedyard manure stocks. Advantages of VisNIR‐DRS include
rapid, non‐destructive scans and portability to in situ
analyses. Practical uses of VisNIR‐DRS include on‐site
analysis of crude ash where manure is produced, collected,
stored, and applied as either a fertilizer or a fuel.

VisNIR‐DRS has also been proven to predict the moisture
content of manure (Reeves and Kessel, 2000; Goetz et al.,
2001; Malley et al., 2002; Brown et al., 2006); therefore, it
may be possible to classify manure quality based on moisture
and ash content with VisNIR‐DRS. An additional model for
the simultaneous prediction of moisture and ash content is
required to determine the cumulative error of prediction.
Practical use of such a classification scheme can be made by
both users and producers of manure who are interested in
knowing its fuel value and its density in relation to
transportation cost.

For applications in which the precise ash content is less
important than whether manure fuel value exceeds a given
threshold, homogenizing, drying, and milling the samples
may not be required. Scanning the manure in its in situ state
would increase the speed and convenience of determination
using VisNIR. For example, it may not be necessary to oven‐
dry or mill a manure sample to estimate the ash content with
adequate accuracy. Further investigation is required to
determine the effect of various pre‐treatment protocols, such
as milling vs. no milling and air‐drying vs. oven‐drying, on
the predictive ability of the model. Once this effect is known,
then the minimum pre‐treatment protocol for a given degree
of accuracy can be determined. The success of a faster, in‐
field method would greatly increase the overall utility of
VisNIR‐DRS in the cattle‐manure context.

Because VisNIR‐DRS detects the spectral signatures of
bonds associated with organic molecules, the source of
organic matter in the manure may affect the predictive ability
of a VisNIR‐DRS model built to predict crude ash content.
For example, the relative proportion of corn and distillers'
grains in feedyard rations (a significant variable in the
feedyard industry now, given the recent growth in ethanol
production in the Midwest) may be reflected in the manure's
organic content. Consequently, the effect of diet composition
on the model coefficients needs to be studied further.
Research to determine the predictive ability of a VisNIR‐
DRS model based on as‐collected samples of manure from
animals being fed a variety of rations would prove the
usefulness of VisNIR‐DRS for determination of crude ash in
industrial, biomass‐conversion processes.

It is also possible that sample temperature influences the
reflectance signature of feedyard manure. If VisNIR
regression coefficients are sensitive to temperature, then
field protocols will need to accommodate the temperature

dependence by preprocessing (warming or cooling the
sample) or by developing unique, seasonal regression
models. In the former case, the protocol will also need to
account for condensation or other phase‐change inter-
ferences associated with warming or cooling a sample.
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