Transport by Advection and Diffusion Revisited

A. T. Corey* and B. W. Auvermann

branches of science, but various scientific disciplines define the two ena and non-equilibrium thermomechanisms of transport differently. Models widely accepted for com-
to here as the *Bird et al. model.* **mechanisms of transport differently. Models widely accepted for com-** to here as the *Bird et al. model*. **bining transport resulting from advection and diffusion are shown to** be inconsistent with experimental observations. Experimental obser**be inconsistent with experimental observations. Experimental obser-** transport of solution constituents can be calculated in vations are cited to show that the barycentric velocity of a solution is response to a total pot vations are cited to show that the barycentric velocity of a solution is
not synonymous with velocity as determined by the Navier-Stokes
equation of fluid motion. The physics of advection and diffusion is
equational, conce **constituent relative to a fixed frame of reference external to the** vided a historical review of the development of the total solution, rather than to the mean velocity of all constituents in a potential concept. solution, rather than to the mean velocity of all constituents in a **solution as defined in current literature. Advection and diffusion con-**
 Strivian Briefly, the authors cited showed that resistances to
 EXECUTE ENTERNATE CONSECUTE IN STRING CONSECUTE ASSEMBED TO A THE PROPERTY OF A

with experimental observations. Diffusion refers to net transport. The remainder of this paper deals with transport resulting from molecular motion in contrast models that evaluate net transport as the sum of advectransport resulting from molecular motion in contrast models that evaluate net transport resulting from advective velocity gradients. In the sum of diffusion. to *dispersion* resulting from advective velocity gradients. tion and diffusion.
Dispersion is sometimes referred to as *diffusion*, but The best-known model, evaluating net transport as Dispersion is sometimes referred to as *diffusion*, but
dispersion refers to a mixing process resulting from tur-
the sum of diffusion and advection, is named after a very dispersion refers to a mixing process resulting from tur-
bulence in open bodies of water, or velocity gradients popular textbook by Bird et al. (2002). Other textbooks, bulence in open bodies of water, or velocity gradients popular textbook by Bird et al. (2002). Other textbooks,
due to heterogeneity in porous materials. Transport of including those dealing with nonequilibrium thermodydue to heterogeneity in porous materials. Transport of including those dealing with nonequilibrium thermody-
solution constituents by diffusion has applications in annics, and the authors of many recent papers, describe solution constituents by diffusion has applications in

and diffusion has important applications in biology be-
cause it is relevant to transport of water and chemicals and temperature gradients, as well as pressure gradients cause it is relevant to transport of water and chemicals and temperature gradients, as well as pressure gradients across cell membranes. Chemical engineers employ a and gravity, are assumed to contribute independently across cell membranes. Chemical engineers employ a and gravity, are assumed to contribute independently
model for combining advection and diffusion in the de-
to the net transport of solution constituents. A concenmodel for combining advection and diffusion in the de-
sign of chemical reactors and systems for removing salts
tration gradient contributes to the average velocity of sign of chemical reactors and systems for removing salts tration gradient contributes to the average velocity of
from water by reverse osmosis. Transport through com-
nacted clav is an important concern for civil engineers pacted clay is an important concern for civil engineers uent. *Average velocity* is used here to designate the re-
engaged in designing clay barriers for hazardous waste sultant velocity of individual molecules averaged in engaged in designing clay barriers for hazardous waste

engaged in designing clay barriers for hazardous waste

differential cross section of solution in a plane perpen-

ment of aqueous solutions and gases within the plan ment of aqueous solutions and gases within the plant-
soil environment Combining advection and diffusion is average velocity defined in this way *local velocity*. Bird

although there are numerous variations of each. The section of porous media.

first model often employed by soil and plant scientists and though there are numerous variations of each. The

ing the text by Bird et al. (2002

Published in Vadose Zone Journal 2:655–663 (2003). average velocity.

© Soil Science Society of America An objective o

ABSTRACT is called the *total potential model*, and the second model, **Mass transport by advection and diffusion is involved in nearly all** described in textbooks dealing with transport phenom-

transport in response to gradients of dissimilar potentials are different functions of medium geometry. Although gradients of thermodynamic potentials may de-MODEL is proposed for evaluating transport by ad-
vection and molecular diffusion that is consistent forces that also affect the direction and magnitude of
with experimental elementions. Diffusion refers to another the rem

many scientific fields.

Evaluating transport by a combination of advection suggested in this paper that retains one important fea-Evaluating transport by a combination of advection suggested in this paper that retains one important fea-
In diffusion has important applications in biology be-
I find the total potential model in that concentration soil environment. Combining advection and diffusion is
essential for any application involving transport of fluids
through porous solids with very small channels.
Two models for evaluating net transport of a constitution. Two models for evaluating net transport of a constitution. The metal in a soil was for transport in soils or other uent in a soil water solution appear in the literature, porous media, where velocity is averaged in a cross

A.T. Corey, 636 Cheyenne Dr., Colorado State Univ., Fort Collins, fied assumptions: (i) Fick's law evaluates the flux of \overline{CO} 80525; B.W. Auvermann Texas Agric Exp. Stn. 6500 Amarillo a solution constituent relative constituents, and (ii) Stokes equation evaluates the Analyses. *Corresponding author (artcorey@lamar.colostate.edu). mean mass average velocity where Eq. [1] defines mass

An objective of this presentation is to show that nei-677 S. Segoe Rd., Madison, WI 53711 USA ther of these assumptions is valid. Equation [6], which

CO 80525; B.W. Auvermann, Texas Agric. Exp. Stn., 6500 Amarillo Blvd. West, Amarillo, TX 79106. Received 21 Jan. 2003. Reviews and

appears under the heading Revised Model, summarizes our model. We suspect there may be many more scien-
tists who accept a model similar to the one we suggest.
However, we have not found published literature point-
ing out the inconsistency between the Bird et al. model is and Eq. [6]. $j_i^* = -c \mathcal{D}_i \nabla (c_i/c)$, [4] The revised model is not presented as a model for all

mechanisms of transport. It is expected to apply only where *c* is molar concentration.
for cases where the driving forces are limited to a body The text by Bird et al. (2002), as well as irreversible for cases where the driving forces are limited to a body force, pressure gradient, and a kinetic energy gradient thermodynamic texts (e.g., de Groot and Mazur, 1984), resulting from a concentration or temperature gradient. state that *v* is given by the Navier-Stokes equation of The revised model is not sufficient for the analysis of fluid motion, derived by applying Newton's second law The revised model is not sufficient for the analysis of fluid motion, derived by applying Newton's second law transport of constituents subject to electrokinetic ef-
of motion to a *fluid particle*. For a fluid continuum transport of constituents subject to electrokinetic ef-
fects. Electrical forces are important factors in the trans-
undergoing negligible tangential acceleration, and subfects. Electrical forces are important factors in the transport of ions through porous media. However, forces on jected to negligible force due to divergence, the applica-
charged particles do not act evenly on all constituents ble equation is given by charged particles do not act evenly on all constituents of a solution and are not proportional to the mass of a reference element of the solution. Consequently, electrical forces cannot be treated as an additional body force, Equation [5] is called the Stokes flow equation, in which and a rigorous analysis of transport subject to electrical $\binom{p}{r}$ is pressure: μ is solution visco forces on ions is beyond the scope of this presentation. Force, usually gravity.

view diffusion as a mixing mechanism that does not **Conceptual Problems with the Bird et al. Model** affect the mass average flux of the solution as a whole. The summation of diffusion fluxes of individual constit-
uents is considered to be zero. Consequently, diffusion velocity to evaluate the momentum of a moving refer-

$$
\mathbf{v} = \sum_{1}^{n} (\rho_i/\rho) \, \mathbf{v}_i. \tag{1}
$$

mass average velocity, of all constituents in the solution mass average velocity may be small in most cases.
Another conceptual problem is that Bird et al. (2002) as a whole; ρ is mass per volume of solution; and the another conceptual problem is that Bird et al. (2002)
subscript *i* refers to a particular constituent. The term are relate diffusion to a mass or mole fraction rat subscript *i* refers to a particular constituent. The term *mean velocity* sometimes is defined by different averag-
concentration gradient as specified by Fick's law. Fick's ing methods in other literature. law has been verified experimentally many times. We

according to the Bird et al. model, is defined as

$$
\boldsymbol{j}_i = \rho_i(\boldsymbol{\nu}_i - \boldsymbol{\nu}). \tag{2}
$$

$$
\boldsymbol{j}_i = -\rho \mathfrak{D}_i \nabla (\rho_i/\rho), \qquad [3]
$$

$$
\mathbf{j}_i^* = -c \mathfrak{D}_i \nabla (c_i/c), \qquad [4]
$$

$$
\rho g - \nabla p + \mu \nabla^2 v = 0. \tag{5}
$$

p is pressure; μ is solution viscosity, and **g** is a body

All forces in Eq. [5] have the dimensions of force per **THE BIRD ET AL. MODEL** volume. However, the gravitational force is a vector acting through the center of mass of a fluid particle, The Bird et al. model is described in the textbook
 Transport Phenomena, the first edition of which was

copyrighted in 1960, and a second edition was copy-

righted in 2002. An identical model is presented in texts

dea

uents is considered to be zero. Consequently, diffusion velocity to evaluate the momentum of a moving refer-
as defined for the Bird et al. model does not apply to
a solution consisting of a single molecular species.
Bird number of molecules or the mass of species molecules per volume of solution does not increase solution viscos-They state that Eq. [1] defines the velocity vector
appearing in the Stokes equation of fluid motion. The
vector v is interpreted as the *mean velocity*, or local
mass average velocity, although the error resulting from t

Mass diffusion flux of a constituent in a solution, know of no experimental evidence, or theory, support-
cording to the Bird et al. model, is defined as ing constitutive equations relating difusion to a gradient of mole or mass fraction, except in cases for which a mass or mole fraction is a scalar multiple of concentra-Equation [2] requires that diffusion fluxes sum to zero. tion. For diffusion in incompressible fluids, a concentra-Bird et al. (2002) interpret Fick's law for mass diffu- tion gradient may not be significantly different in magnision flux of a constituent as tude from the mole fraction gradient, but for gases subject to a pressure gradient the error is proportional to the resultant of a pressure gradient and body force, to the pressure gradient. occurs in porous materials that restrict motion of solute

state that Fick's equation evaluates diffusion as a flux The Bird et al. model does not predict a mean flux "measured with respect to the motion of the center of counter to a pressure gradient in a horizontal system. mass." Since Fick's law equates diffusion to a gradient Several investigators, notably Kemper and Rollins relative to external coordinates, we find no reason to (1966), Olsen (1985), and Malusis et al. (2001) found suppose that Fick's law evaluates a flux relative to a that solutes accumulate upstream when they are removing frame of reference. The fact that a flux relative stricted to a greater extent than water molecules. A to a solid boundary also contributes to the mean flux concentration gradient in the water is established that does not justify the assumption that the flux evaluated has the effect of increasing resistance to advection. The is relative to the mean flux. To demonstrate our reason- added resistance is caused by the tendency of water to ing, we suggest the following analogy: diffuse in a direction opposite to the advective flux.

airport. To calculate the velocity of the man relative to imposed across a porous medium for a given net flux external coordinates, one must add the velocity of the of water. This phenomenon is not predicted by any man (relative to the escalator) to the velocity of the theory based on continuum mechanics. escalator. One would not add the velocity of the man Kemper and Rollins (1966) refer to the buildup of

mean velocity. Consequently, the Bird et al. model em-

ploys Eq. [5] to evaluate mean velocity. Haase (1969) Mason and Malinauskas (1983) refer to the separation of a fluid particle. They state that barycentric velocity tion. Evidently, the latter authors also assume that gradimolecular masses under isothermal and isobaric con-

(Auvermann, 1996.) an estimated pore dimension of 100 nm.

A more significant problem is that Bird et al. (2002) molecules to a greater extent than solvent molecules.

Consider a man walking on a level escalator in an The result is that a larger pressure difference must be

to the mean velocity of man and escalator. Moreover, pressure upstream resulting from the accumulation of it is necessary to evaluate the velocity of the man to salts in response to an imposed pressure gradient as determine the mean velocity. Even if Bird et al. (2002) *osmotic pressure*. Osmotic pressure developed is less were correct in their assumption that Stokes' equation than a theoretical osmotic pressure based on the meaevaluates the mean velocity, adding a velocity calculated sured solute concentration because the clay soils investifrom Fick's law to the mean velocity would not give the gated, unlike a perfect membrane, do not totally exclude velocity of a constituent. Solutes. The ratio of actual pressure buildup to the maxi-The Bird et al. model assumes that density and tem- mum possible osmotic pressure (corresponding to the perature gradients have no effect on the mass average observed concentration) is defined as *osmotic efficiency* velocity of all constituents in a solution, only on the of the soil material. Fritz (1986) presented a review of velocity of particular molecular species relative to the literature dealing with hyperfiltration effects and os-

ploys Eq. [5] to evaluate mean velocity. Haase (1969) Mason and Malinauskas (1983) refer to the separation and de Groot and Mazur (1984) refer to ov as barycen-
of constituents in response to an imposed pressure gradiand de Groot and Mazur (1984) refer to *pv* as barycen-
tric velocity, meaning the velocity of the center of mass
ent on a gaseous solution as *forced diffusion*. This notric velocity, meaning the velocity of the center of mass ent on a gaseous solution as *forced diffusion*. This no-
of a fluid particle. They state that barycentric velocity menclature follows from the definition of diffus is evaluated by the Navier-Stokes equation of fluid mo-
tion. Evidently, the latter authors also assume that gradi-
ments of Kemper and Rollins (1966), Olsen (1985), and ents of concentration and temperature are accounted Malusis et al. (2001) show that diffusion defined in this for in the pressure gradient and have no independent way actually includes transport due to both pressure for in the pressure gradient and have no independent way actually includes transport due to both pressure effect on barycentric velocity. However, experimental and concentration gradients. In a dynamic process, the effect on barycentric velocity. However, experimental and concentration gradients. In a dynamic process, the observations show clearly that density and temperature relative magnitude of the two mechanisms is likely to observations show clearly that density and temperature relative magnitude of the two mechanisms is likely to gradients do have an effect on **v** except for a special change with time, so that evaluating mean velocity with gradients do have an effect on *v*, except for a special change with time, so that evaluating mean velocity with
case of interdiffusion of molecular species with identical a constitutive equation involving a single coeffic case of interdiffusion of molecular species with identical a constitutive equation involving a single coefficient is
molecular masses under isothermal and isobaric con-
not a valid option. Moreover, diffusion may occur in ditions. cases where no separation occurs along a flow path. An example is the case of thermal diffusion of pure water

Experimental Observations investigated by Corey and Kemper (1961).
Corey and Kemper (1961) conducted an experiment Evidence contradicting the Bird et al. (1960) model (Fig. 1) originally intended to demonstrate limitations is deducible from published experimental observations. of the total potential concept. We believe that their Graham (1833) earlier had published experimental evi-
experiment also shows the fallacy of the Bird et al. dence contradicting the Bird et al. (1960) conception model as it applies to thermal diffusion. Corey and of diffusion. Graham's experiments demonstrated that Kemper established a temperature difference of 10° C when two molecular species with different molecular across an interchangeable porous membrane separating masses are interdiffusing in a horizontal system under two reservoirs filled with pure water. Initially, water isothermal and isobaric conditions, significant mean mo- levels in piezometers in both reservoirs were equal. The lar and mass average velocities occur in opposite direc- first membrane investigated was cellulose acetate with tions. That observation cannot be reconciled with the an estimated pore dimension of 2.7 nm. The second Bird et al. model for calculating barycentric velocity membrane was a Millipore (Billerica, MA) filter with

Kemper and Rollins (1966) investigated osmotic pres- Density of water in the colder reservoir was slightly sures in soils. They observed that a mean flux, counter greater than density in the warmer reservoir. However,

Fig. 1. Corey-Kemper experiment (1961).

moved upward and the level in the piezometer in the tions, that barycentric velocity cannot be evaluated by warmer reservoir moved downward. A steady state was the Stokes equation of fluid motion where a thermal eventually established such that the levels remained gradient exists. Mean flux observed by Corey and constant, indicating a zero net flux across the membrane. Kemper (before a steady state occurred) was opposite Flux is used here to designate a velocity averaged in a in direction to that predicted by the Stokes equation. cross section of medium rather than a cross section of Consequently, a statement often found in the literature solution. We note that since the liquid involved was (that a temperature gradient has little effect on the mean pure water, diffusion as interpreted by Bird et al.(2002) velocity) is obviously false in the general case. was not a mechanism of transport. It is clear from the experimental observations de-

acetate membrane was 70 cm compared with 0.9 cm sent driving forces independent of a pressure gradient, with the Millipore filter. The head difference at steady as stated by Mason and Malinauskas (1983) in their state is interpreted as *thermal-induced* pressure, analo- paper dealing with the Dusty-Gas Model for transport gous to *concentration-induced* osmotic pressure mea- of gases. Each mechanism must be evaluated indepensured by Malusis et al. (2001). $\qquad \qquad$ dently with a transport equation involving a coefficient

membrane material could account for the observed flux. only by summing fluxes associated with each mech-We note that any force associated with a pure water-
membrane interaction will be normal to membrane sur-
Exp faces. The surface force should not affect the driving clearly that the Stokes equation is not adequate for forces producing either advection or diffusion. How- evaluating mean velocity of constituents in a solution ever, resistance to flux resulting from either a pressure subject to density or thermal gradients. Recent authors or temperature gradient may be affected by membrane have presented more general equations, based on the properties, including surface forces as well as pore ge- Stefan-Maxwell equations for evaluating mean velocity ometry, especially where the solution includes soluble that involve less stringent assumptions. However, equasalts. the stefan-Maxwell model described by the Stefan-Maxwell model described by

pendent mechanisms of transport were involved in their ity as a velocity relative to the mean velocity. Conseexperiment: a flux responding to a thermal gradient and quently, constituent equations based on this model also a flux responding to a pressure gradient, although the are constrained by the requirement that the vector sum solution consisted of a single molecular species. More- of diffusion fluxes is zero. over, the flux mechanisms are different functions of This constraint implies that diffusion does not occur matrix properties. This fact makes it impossible to evalu- in solutions consisting of a single molecular species. ate the average velocity with a constitutive equation Consequently, the Stefan-Maxwell model, like the Bird involving a single coefficient where both thermal and et al. model, would define the average flux observed pressure gradients exist. by Corey and Kemper (1961) as advection only, even

the water level in the piezometer in the colder reservoir We also conclude, from the Corey-Kemper observa-

The head difference at steady state with the cellulose scribed above that density and thermal gradients repre-Some reviewers of the Corey and Kemper paper sug-
gested that forces of interaction between water and the particular mechanism. Net transport can be determined particular mechanism. Net transport can be determined

Experimental observations cited above demonstrate Corey and Kemper (1961) concluded that two inde- Truesdell and Toupin (1960), also define diffusion veloc-

response to a thermal gradient. underestimates advective flux where channel dimen-

cates that the Bird et al. model for net velocity of a ation of slip flux requires a unique coefficient because constituent in a solution is unsatisfactory. A revised momentum is transferred directly to solid boundaries. model is described below. In most cases, slip flux in liquids probably can be

Our model treats diffusion as a transport mechanism

that contributes to the mean flux of all constituents of

solutions. Slip flux with gases is a much more signifi-

that contributes to the mean flux of particular consti

Darcy's equation, like the Stokes equation, has no term for kinetic energy gradients associated with density

$$
q_i = c_i q + J_i^N. \qquad [6]
$$

as *q*. J_i^N is the net diffusion flux of a constituent, resulting
from both concentration and thermal diffusion. The dif-
from both concentration and thermal diffusion. The dif-
fusion flux in Eq. [6] differs from *j_{t*}

though a major component of the flux observed was in tion of zero velocity at a solid boundary significantly We believe that the experimental evidence cited indi-
sions approach the dimensions of a fluid particle. Evalu-

> neglected, although it may be a significant mechanism **REVISED MODEL** of transport through porous media with a very large specific surface. Slip flux for gases is a much more signifi-

$$
\boldsymbol{q} = (k/\mu + k_{\rm s})(\rho \boldsymbol{g} - \nabla p). \qquad [7]
$$

For thermal gradients. A model is proposed for evaluat-

ing flux of a constituent as the vector sum of a flux responding to a pressure gradient and body force, and

a flux responding to either a concentration or thermal

q or molar flux with Darcy's equation is negligible in the case of liquid solutions. However, error from employing The net flux of a constituent is designated as q_i ; the
advective flux of the solution as a whole is designated
as $q \cdot J_i^N$ is the net diffusion flux of a constituent, resulting
as $s = 0$. J_i^N is the net diffusion fl

Advection in Porous Media between solute concentration and effective solvent permeability are not currently and effective solvent permeability are not currently Advection, unlike barycentric velocity, may be evalu- available. For an analysis of electrokinetic effects on ated with an appropriate version of the Stokes equation hydraulic and osmotic flow of ions through clays, the where slip flux is a negligible mechanism of transport. reader is referred to a paper by Kemper et al. (1972), and A solution of the Stokes equation based on an assump- to the other authors on this subject cited in their paper.

vestigators such as Thomas Graham (1833) and those effective in transporting mass. A large portion of the who verified his observations. It is not consistent with temperature gradient is effective in transporting heat the the Bird et al. model or other closely related models only.
described in modern textbooks.
We assume that the proportion of a temperature gra-

subtracted what they interpreted as the mean velocity from the velocity of a constituent relative to fixed coor- by intermolecular forces. For example, a temperature dinates. We consider that the Bird et al. model is invalid gradient in a solid results in no mass transport by diffu-
because transport they interpreted as mean flux is actu-
sion. The temperature gradient obviously is dis because transport they interpreted as mean flux is actu-
ally only a component of mean flux responding to a entirely by flow of heat rather than mass in this case. ally only a component of mean flux responding to a entirely by flow of heat rather than mass in this case.

piezometric gradient, as shown by the experimental ob-

Diffusion is related to the gradient of a function of piezometric gradient, as shown by the experimental observations cited above. Consequently, we evaluate mean temperature, not to temperature per se, because a temflux with the equation set presented above for the re-
vised model. Diffusion fluxes do not sum to zero in the that velocity of translation of fluid molecules is affected. general case, as demonstrated by experimental obser- Unfortunately, experimental data (identifying an appro-

tive to fixed coordinates, we assume that the number one may assume a suitable function is $T^{1/2}$ based on of constituent molecules crossing a reference surface kinetic theory as described above of constituent molecules crossing a reference surface
within a given time interval is proportional to the prod-
uct of concentration and the mean velocity of constit-
uent molecules. We assume that a pressure gradient
mol

mean velocity as defined by Bird et al. (2002) .

We designate molecular velocity in a frame of refer-
ence attached to a fluid particle as s. Molecular velocity
for an ideal gas, in a frame of reference attached to a
fluid particle, is directly proportional to the squar

$$
\mathbf{s}_i \propto T^{1/2} M_i^{-1/2},\tag{8}
$$

where *T* is Kelvin temperature; M_i is molecular mass,
and s_i is an average molecular velocity of a constituent Net diffusion flux is given by and s_i is an average molecular velocity of a constituent in a frame of reference attached to a fluid particle. For the general case of liquid solutions,

$$
s_i \propto M_i^{-1/2} f(T). \tag{9}
$$

Kelvin temperature, according to kinetic theory, is due uents is presented in Appendix B. to the velocity of translation in a frame of reference attached to fluid particles. Intermolecular forces restrict **Thought Experiment** the mean free path of liquid molecules so that kinetic energy may be partly due to rotation or vibration rather A thought experiment is presented below to show the than translation only. According to kinetic theory, the contrast in conclusions resulting from the Bird et al.

Diffusion in Porous Media driving force for thermal diffusion is a gradient of kinetic We interpret diffusion as the flux of a constituent energy. We assign the dimensions of energy per unit
energy. We assign the dimensions of energy per unit
energy per unit mass to temperature so that the gradient of temper The method is the Handre and Constitution

(relative to fixed coordinates) in response to concentra-

tion or thermal gradients. This interpretation is consistent with the interpretation of Fick and other early in-

vestig

In deriving an equation for diffusion, Bird et al. (2002) dient effective in transporting mass depends on the ex-
https://www.htmcted what they interpreted as the mean velocity tent to which the velocity of translation is

that velocity of translation of fluid molecules is affected. vations. **priate function** of temperature for liquid solutions) is In deriving a constitutive equation for a velocity rela- not available in the literature. For gaseous solutions,

molecular forces on reducing the velocity of translation
thas negligible effect on diffusion in a liquid solution,
because it has no effect on concentration for incom-
pressible fluids.
The example of the diffusion coeffic

$$
\mathbf{J}_i^T = -D_i T^{-1/2} \nabla T^{1/2}, \qquad [10]
$$

square root of molecular mass.
For an ideal gas, ent, generalized for volume flux in porous media, is given by

$$
\mathbf{J}_i^c = -D_i c^{-1} \nabla c_i. \tag{11}
$$

$$
\mathbf{J}_i^N = \mathbf{J}_i^c + \mathbf{J}_i^T. \tag{12}
$$

For diffusion of a constituent in a gas, c is a function $\frac{1}{2}$ of pressure and temperature as well as mole fraction.
Kinetic energy of ideal gas molecules proportional to A more detailed analysis of diffusion of gaseous constit-A more detailed analysis of diffusion of gaseous constit-

that a net flux will occur from left to right across the independent of now; that is, the plane of the opening
membrane until equal pressures and concentrations are is parallel to the resultant molecular velocity. When

and mass fractions are initially equal on both sides of
the membrane, the initial flux will be exclusively advectorial to the solution of fluid molecules
tion as evaluated by Stokes equation. The revised model
of the plane predicts that because the concentrations of both constituents on the right are less than that on the left, diffusion a directional variation in the magnitude of σ . However, of both constituents as well as advection will occur from directional variation in σ is associated of both constituents, as well as advection, will occur from directional variation in σ is associated with advection left to right. Diffusion fluxes for the two constituents as well as diffusion. Only the rate of change left to right. Diffusion fluxes for the two constituents as well as diffusion. Only the rate of change of momen-

predicted with the revised model will not sum to zero turn in a frame of reference attached to a reference predicted with the revised model will not sum to zero. The total flux will be the sum of fluxes by advection volume drives diffusion. Moreover, the directional vari-The total flux will be the sum of fluxes by advection. and diffusion, a greater flux than that evaluated by the ation in normal surface stress is nearly always too small
Stokes equation. The ratio of fluxes due to advection compared with the pressure to be detected by a Pitot Stokes equation. The ratio of fluxes due to advection and diffusion will depend on dimensions of channels in tube. the membrane. The rate of angular deformation, for a given local

experimental evidence. However, for those who prefer mensions. Specifically, resistance increases with the inan explanation in mathematical terms, an analysis is verse square of channel dimensions, as predicted by presented in Appendix A. Poiseuille's equation for viscous flow in tubes. As chan-

mean flux is evaluated by the Stokes equation is, evi-
dently because they believe gradients of density or Advective flux through channels smaller than the dently, because they believe gradients of density, or a dently and the dently and the velocity of molecular translation associated with tem-
mean free path, in response to a pressure gradient, is perature, are reflected in the pressure gradient. Conse-
quently it is important to understand why gradients of from moving molecules directly to solid boundaries. quently, it is important to understand why gradients of trom moving molecules directly to solid boundaries.

density or molecular velocity are not entirely reflected Knudsen (1909) was the first to report slip flux for flo density or molecular velocity are not entirely reflected Knudsen (1909) was the first to report slip flux for flow
in a pressure gradient. The reason is that a directional of liquids under large pressure gradients in very in a pressure gradient. The reason is that a directional of liquids under large pressure gradients in very small
variation in normal surface stress does not contribute tubes. He interpreted slip flux as being associated wi variation in normal surface stress does not contribute tubes. He interpreted slip flux as being associated with
to a pressure gradient Only a spatial variation in normal a nonzero velocity where fluid contacts a solid surf to a pressure gradient. Only a spatial variation in normal a nonzero velocity where fluid contacts a solid surface.

A coefficient relating resistance to slip flux does not surface stress contributes to a pressure gradient

$$
p = (\sigma_x + \sigma_y + \sigma_z)/3. \qquad [13]
$$

In Eq. [13], σ_x , σ_y , and σ

surface stress vector σ in three coordinate directions. Normal surface stress represents rate of change of momentum averaged in a reference area rather than the entire surface of a reference volume. Both pressure and normal surface stress are intensive variables because they are defined at a point, the centroid of differential elements across which momentum is averaged. An area is regarded as a vector having the direction of the outer normal, as explained in all textbooks dealing with vectors. Consequently, normal surface stress, unlike pressure, is a vector quantity, and its magnitude varies with direction relative to the resultant velocity.

Normal stress is associated with the number and ve-**Fig. 2. Thought experiment.** locity of molecules crossing a surface area. If there is model and our revised model. Figure 2 represents a
chamber separated into two parts by a porous mem-
brane containing a binary gas with constituents having
different molecular masses.
Initially, the mole fractions of the

established on both sides.
The Bird et al. model predicts that since the mole age magnitude of normal surface stress components. By The Bird et al. model predicts that since the mole age magnitude of normal surface stress components. By
d mass fractions are initially equal on both sides of contrast, a Pitot tube is oriented to produce stagnation

Support for the revised model is based primarily on velocity, increases rapidly with decreasing channel dinel dimensions approach the mean free path of fluid **Pressure Related to Normal Surface Stress** molecules, resistance to viscous flow would theoretically The reason that Bird et al. (2002) and others assume approach infinity if slip at solid boundaries did not occur.

Streeter (1948) shows that pressure is given by involve fluid viscosity directly. A velocity component resulting from directional variation in surface stress, associated with diffusion, involves a different mechanism of momentum transfer to solid boundaries that

apparently causes no angular deformation of volume el-

enents

relative to the barycentric flux

component of the total velocity, not the mean velocity of all constituents in a solution. (ii) Advection in porous

media includes slip flux as well as viscous flux. (iii)

Diffusion, defined as a velocity responding to concentra-

Diffusion, defined as a velocity responding t

Resistance associated with slip flux, \mathbf{r}_n is a function
of pressure and advective flux, as well as fluid and media
properties. Slip at the boundary causes an overall reduc-
unit and media
tion in resistance to advec mechanism of transport. Resistance forces balance driving forces virtually instantaneously in the latter case.

Molecules in fluid particles possess kinetic energy **APPENDIX B-DIFFUSION OF**
associated with their motion. Where concentration or **CONSTITUENTS OF IDEAL GASI** associated with their motion. Where concentration or **CONSTITUENTS OF IDEAL GASES** temperature gradients exist, this energy is capable of temperature gradients exist, this energy is capable of
transporting mass as well as heat. Molecular motion is
not entirely random relative to coordinates attached to
a fluid particle. In this case, molecules have a resulta contributes to the force because concentration gradients gradient of the product of concentration and velocity

Stokes equation may be modified formally to include.

$$
\rho \mathbf{g} - \nabla p + \mu \nabla^2 \mathbf{v} + \mathbf{r}_s - \sum_{1}^{n} \nabla (\rho_i \mathbf{s}_i^2 / 2) + \sum_{1}^{n} \mathbf{r}_i = 0 \qquad [14]
$$

relative to the barycentric flux.

We present Eq. [14] to explain our analysis of diffu-**CONCLUSIONS** sion and advection, but not as a method of evaluating (i) Advection, defined as velocity responding to the mean velocity. Advection, associated with the first four sultant of body force and a pressure gradient, is a terms on the left of Eq. [14], is evaluated with Eq. [7]. resultant of body force and a pressure gradient, is a terms on the left of Eq. [14], is evaluated with Eq. [7].
component of the total velocity, not the mean velocity Diffusion, associated with last two terms on the left o

different functions of matrix properties. mechanism of transport. However, the equations of Stefan-Maxwell omit momentum flux associated with con-**APPENDIX A—ANALYSIS** centration and thermal gradients, because the contin-
uum assumption is accepted in their derivation.

or viscous resistance. Evidence supporting Darcy's equa-
tion shows that tangential acceleration can be neglected last two terms on the left of Eq. [14] independently sum
for flow in porous media where diffusion is a signi for flow in porous media where diffusion is a significant to zero. We can conceive of no case such that these terms
mechanism of transport. Resistance forces balance driv-
would vanish where a temperature gradient is invol

usually are associated with a gradient of density. of molecular translation in a frame of reference attached
Stokes equation may be modified formally to include to a fluid particle.

diffusion for solutions subjected to significant concen- Combining Eq. [8] and the ideal gas law indicates tration and thermal gradients as that the product of concentration and velocity of translation is given by

$$
s_1c_i = p_i T^{-1/2} / RM^{1/2}, \qquad [15]
$$

The fifth term on the left of Eq. [14] evaluates the where R is the universal gas constant, and p_i is the partial driving force per unit volume of solution for diffusion. pressure of the constituent. A tentative constitutive equa-The diffusion flux considered here is a component of tion for diffusion of gaseous constituents in response to the net or mean volume flux of all constituents in the either temperature or concentration gradients is given as

$$
J_i^N = -D_i p^{-1} T^{1/2} \nabla (p_i T^{-1/2}).
$$
 [16] **σ** normal surface stress (M L⁻¹ T⁻²)

Eq. $[16]$, like Eq. $[10]$, is based exclusively on theoreti cal considerations and needs experimental verification.) The theory indicates that, because concentration is inversely related to Kelvin temperature and molecular **Coefficients** velocity is directly related to only the square root of temperature, the net effect of a temperature gradient temperature, the net effect of a temperature gradient D_i diffusion coefficient in the revised model, a function for gases is a diffusion flux in the opposite direction to D_i diffusion constituent medium, and solution that for thermal diffusion in liquid solutions.

Bird et al. (1960) state that "temperature gradients, κ intrinsic permeability to solution (L²) and external forces also contribute to the diffusion flux, although their effects are usually minor." In fact, the indirect effects of a pressure gradient on diffusion of **Subscripts** gaseous constituents can be large. A temperature gradient can have a significant indirect effect on diffusion of μ indicates a particular constituent (none) gaseous constituents, and a direct effect on diffusion of μ_{ν} indicate coordinate directions (none) gaseous constituents, and a direct effect on diffusion of *x*,*y*,*z* indicate coordinate directions (none) constituents in liquids that is not necessarily small constituents in liquids that is not necessarily small.

REFERENCES APPENDIX C

- *v* advective solution velocity (volume/solution area/ Bird, R.B., W.E. Stewart, and E.N. Lightfoot. 2002. Transport phe- ρ relative to external coordinates (L T⁻¹) nomena. John Wiley & Sons, New York. time) relative to external coordinates $(L T^{-1})$ nomena. John Wiley & Sons, New York.
- relative to external coordinates (LT^{-1})
- J^N net diffusion flux (volume/medium area/time) responding to concentration and thermal gradients de Groot, S.R., and P. Mazur. 1984. Non-equilibrium thermodynamics. $(L T^{-1})$
- $(L T^{-1})$

 J^T diffusion flux responding to thermal gradients (LT^{-1}) Philos. Mag. J. Sci. 2:175–190, 269–276, 351–358.

- *s* molecular velocity (in all directions) relative to coordi-
mates attached to fluid particles $(L T^{-1})$
 \cdot *s* and *LE* \cdot *Kemper, W.D., and J.B. Rollins. 1966. Osmotic efficiency coefficients* nates attached to fluid particles $(L T^{-1})$
-

j† diffusion molar flux (as evaluated by Eq. [4]) (L^{-2} T^{-1}

- r_s resistance to advection associated with slip flux (M Petroleum Inst., Washington, DC.

Knudsen, M. 1909. Die Gesetze der molekularstrommung und der $2 T^{-2}$
- r_i resistance to diffusion of a constituent (M L^{-2} T⁻²

 $(1 T^{-2})$ T temperature $(L^2 T^{-2})$

-
- *c* molar concentration (L^{-3})
- ρ solution or constituent density (M L⁻³)
- g body force vector (L T^{-2})

- $\mathcal D$ diffusion coefficient in Eq. [3] and [4] (L² T⁻¹)
- of temperature, constituent, medium, and solution $^1)$

- k_s coefficient for slip flux (L^3 M⁻¹ T)
- μ dynamic viscosity (M L⁻¹ T⁻

-
-
-

- Auvermann, B.W. 1996. Analysis of the constitutive equation of gas **List of Symbols** diffusion in the laminar advective regime. Ph.D. diss. Colorado State Univ., Fort Collins.
- Mass (M), Length (L), and Time (T) Bear, J. 1972. Dynamics of fluids in porous media. American Elsevier Publ., New York.
	- **Velocity Vectors†** Bird, R.B., W.E. Stewart, and E.N. Lightfoot. 1960. Transport phenomena. John Wiley & Sons, New York.
Bird, R.B., W.E. Stewart, and E.N. Lightfoot. 2002. Transport phe-
		-
- q advective solution flux, (volume/medium area/time) Corey, A.T., and W.D. Kemper. 1961. Concept of total potential in water and its limitations. Soil Sci. 91(5):209–302. relative to external condinations (L T-1)
	-) Corey, A.T., and A. Klute. 1985. Application of the potential concept
	- Dover Publ., New York.
- J^c diffusion flux responding to concentration gradients Fritz, S.J. 1986. Ideality of clay membranes in osmotic processes: A review. Clays Clay Miner. 34:214–223.
	-) Graham, T. 1833. On the law of diffusion of gases. London Edinburgh
	-
- nates attached to fluid particles $(L T^{-1})$
 j diffusion mass flux, (as defined by Eq. [1]) $(M L^{-2} T^{-1})$
 kemper, W.D., and J.B. Rollins. 1966. Osmotic efficiency coefficients
 across compacted clays. Soil Sci. Soc. Am.) across compacted clays. Soil Sci. Soc. Am. Proc. 30:529–534.
	- ² Kemper, W.D., J. Shainberg, and J.P. Quirk. 1972. Swelling pressures, electric potentials, and ion concentrations: Their role in hydraulic ¹
	- and osmotic flow through clays. Soil Sci. Soc. Am. Proc. 36:229–236.
Klinkenberg, L.J. 1941. The permeability of porous media to liquids **Resistance Vectors Resistance Vectors Resistance Vectors and gases.** p. 200–213. *In* Drilling and production pracices. Am.
		-) inneren reibungsstrommung der gase durch rohren. Ann. Phys.) (Berlin) 28(1):75–130.
		- Malusis, M.A., C.H. Schackelford, and H.W. Olsen. 2001. A laboratory **State Variables apparatus to measure chemico-osmotic efficiency coefficients for** clay soils. Geotech. Test. J. 24(3):229–242.
			- *Mason, E.A., and A.P. Malinauskas. 1983. Gas transport in porous media: The dusty-gas model. Elsevier Science Publ., New York.*
-) Olsen, H.W. 1985. Osmosis: A cause of apparent deviation from *^t* time (T) Darcy's law. Can. Geotech. J. 22:238–241.
	- Streeter, V.L. 1948. Fluid dynamics. McGraw-Hill, New York.
	- Truesdell, C., and R. Toupin. 1960. The classical field theories.

[†] All velocity and flux variables are resultant velocities in the tangen- p. 226–793. *In* S. Flugge (ed.) Handbuch der physik. Vol. III, Part tial direction, except *s* which implies no particular direction.