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ABSTRACT 
Four variations of the least-squares regression procedure 

proposed by Lettau (1971) were used to define a solution 
envelope containing the soil thermal diffusivity function, 
a(z), for a soil with a heterogeneous moisture profile. An 
explicit finite difference model of the one-dimensional heat 
equation was used to evaluate the four variations of 
Lettau's procedure based upon agreement between 
measured and simulated temperatures over a 24-h 
temperature cycle. The application of Lettau's regression 
procedure to a database containing only temperature data 
from the cooling cycle portion of the diumal temperature 
wave was shown to most faithfully reproduce field 
temperature measurements. KEYWORDS. Soil, Temperature. 

INTRODUCTION 

Efforts to partition thermal energy transfer between 
the soil surface and the air into its sensible and latent 
components depend upon independent determination 

of the soil heat flux, an important component of the surface 
energy balance. Soil heat flux may be measured in situ 
using flat-plate heat flux transducers (Philip, 1961), or it 
may be estimated by combining laboratory determinations 
of the soil thermal conductivity, X, with field 
measurements of the soil temperature gradient, 5T/8z. 
Empirical methods of estimating the soil heat flux have 
been proposed by Oliver et al. (1987); Horton and 
Wierenga (1983); Novak and Black (1983); and 
Choudhury et al. (1987). 

The use of the heat flux transducer can be impractical, 
especially in instances in which the soil thermal 
characteristics, soil moisture regimes, and incident solar 
radiation regimes vary spatially. Heat flux transducers are 
difficult to install and calibrate properly, and tend to 
interfere with the migration of soil moisture; when the 
conductivity of the flux plate material differs significantly 
from the conductivity of the soil in which it is installed, the 
transducer also disrupts the soil heat flux. A method to 
determine soil thermal conductivity in situ using simpler 
instrumentation would facilitate the measurement of soil 
heat flux. 

The classical approach to the analysis of soil heat flux 
(Carslaw and Jaeger, 1959; Jackson and Kirkham, 1958; 
and Van Wijk, 1963) combines Fourier's Law: 

q=-; iSr 
5z 

with the Principle of Conservation of Energy, 

(1) 

Qi A - q A =SS. (2) 

where 
q = heat flux in the z-direction (W/cm2) 
X, = soil thermal conductivity (W/cm C) 
8T/8z = temperature gradient in the z-direction 

(C/cm) 
qi = heat flux entering a control volume of soil 

(W/cm2) 
qo = heat flux leaving a control volume of soil 

(W/cm2) 
Ai = surface area through which incoming heat 

flows (cm2) 
AQ = surface area through which outgoing heat 

flows (cm2) 
5S/5t = time rate of change of heat storage in a 

control volume of soil (W) 
Cp = soil volumetric heat capacity {Hew? C) 

If heat flux is assumed to occur in only one direction, z, 
then a combination of Fourier's Law and the Principle of 
Conservation of Energy yields the one-dimensional heat 
equation, a parabolic partial differential equation of the 
form: 

8t 8z V 8z / 
(3) 

When the partial derivative on the right-hand side of 
equation 3 is expanded, the resulting form of the heat 
equation is: 
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C 5T = x ^ + § ^ ^ 
^ 8t 5z2 8z 5z 

Equation 4 may then be rearranged to yield: 

(4) 
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a:=a5>r^psr 
8t 8z2 5z 

(5) 

in which a is defined as the soil thermal diffusivity in 
cm2/s: 

APPROXIMATION OF PARTIAL DERIVATIVES 
The first task in developing the finite difference model 

of equation 5 was the algebraic approximation of the 
partial derivatives. The first partial of temperature with 
respect to time was expressed as follows (superscripts 
denote time step, subscripts denote space indices): 

a 
_ X (6) 8 T - T f ' - T | 

5t' At 
(10) 

and P is defined as: 

P = - 1 8X 
CpSz 

(7) 

Equation 5 is the form of the heat equation used as 
Lettau's regression model. The two spatial derivatives of 
temperature, 6T/8z and 52T/5z2, were treated as the 
independent variables, 8T/8t as the dependent variable, and 
a and p as the regression parameters. 

The objective of this study was to evaluate the utility of 
four variations of the least-squares regression procedure 
proposed by Lettau (1971) for estimating the soil thermal 
conductivity as a function of depth, using the following 
tools: 

• A model of the relationship between the soil 
volumetric heat capacity, Cp, and soil moisture 
content, 0. 

• An explicit finite difference model of the one-
dimensional expanded heat equation. 

MODEL DEVELOPMENT 
ESTIMATING THE SOIL VOLUMETRIC HEAT CAPACITY, Cp 

The soil volumetric heat capacity was determined using 
a technique proposed by deVries (1963) and simplified by 
Campbell (1985): 

c^e^Of)=cii-(^f)+c,e (8) 

where 
Cm volumetric heat capacity of the mineral 

component of the soil (assumed to be 
2.39J/cm3C) 
volumetric heat capacity of water (assumed 
tobe4.18J/cm3C) 
soil porosity 

The volumetric heat capacities of the mineral and organic 
fractions are very similar, typically 2.39 and 2.50 J/cm3 C, 
respectively, so the two fractions have been combined in 
the term (1 - <|)f). The soil porosity was calculated from soil 
bulk density measurements using the equation: 

(|)f = 

( | ,^=LOO-(BD] 
VPD/ 

(9) 

where BD is the soil bulk density (g/cm^), and PD is the 
soil particle density, assumed to be 2.65 g/cm^, a typical 
value for quartz and clay minerals (Campbell, 1985). 

The first and second partials of temperature with respect to 
space were defined by the explicit approximations: 

5t 2AZj +(AZi^, + AZi_,) 

^ i = ^ 
8z^ Azj 

(Tl.-Ti) ( T I - T U 
AZ;+ AZ; 

i+1 
Azj_j + AZj 

(11) 

(12) 

The explicit finite difference equation that results from the 
above approximations is: 

TJ+i = TJ+ 2aAt 
AZ; 

+ 2pAt 

( T i - T j ) _ ( T j - T g 

AZ;+ AZ; i+1 AZi_i + Azj 

(Tli-TiJ 
2AZi+AZi^i+AZi_i 

(13) 

ESTIMATING THE PARTIAL DERIVATIVES FROM FIELD 

TEMPERATURE MEASUREMENTS 

Using the expanded form of the heat equation as the 
regression model required the estimation of 8T/8t, 8T/8z, 
and 82T/8z2 from field temperature measurements. To 
determine the two spatial derivatives , the depth-
temperature profile at each time interval was fit with a 
cubic spline interpolating function composed of (n - 1) 
cubics of the form: 

T.(z) = ajz3+ biZ^+ CjZ+ dj (14) 

The end conditions selected for the spline model specified 
8T/8z = 0 and 82T/8z2 = 0 at 95 cm. The first and second 
derivatives in space, then, were calculated from the 
following expressions: 

8T 

L8z 
= 3a;Z2+ 2b;Z+ C; 

8^ 
8z2 

= 6ajZ+ 2bj 

(15) 

(16) 
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The cubic spline model of T(z) preserved the continuity 
of the first and second derivatives throughout the space 
domain. The time derivative of temperature was expressed 
with a finite difference approximation, for which (i) is the 
depth index: 

ST_T,(t+At)-T,(t) 
5t At 

(17) 

BOUNDARY AND INITIAL CONDITIONS 
The solution of a one-dimensional parabolic differential 

equation such as equation 4 on the domain 0 < z < 95 
requires the specification of the initial condition, T(z,t = 0), 
and two boundary conditions, at z = 0 and z = 95. The 
initial condition was specified with the measured soil 
temperatures at t = 0. The surface boundary condition was 
described as a Dirichlet boundary: 

T(z = 0 , t ) = T,(t) (18) 

for which To(t) was defined by measured soil temperatures 
at the soil surface, taken at 15-min intervals throughout the 
test. Intermediate values of TQ(t) were represented by linear 
interpolation of adjacent 15-min measurements. The lower 
boundary condition was described as a Dirichlet boundary: 

T(z = 95,t) = T(z = 95,t = 0) (19) 

which is consistent with the documented experimental 
observation that the temperature at a sufficiently deep soil 
layer is time-invariant (Campbell, 1985). 

METHODS AND MATERIALS 
SITE DESCRIPTION 

The study was performed at the Texas A&M University 
Farm, 11 km west-southwest of College Station, Texas, 
between 15 March and 16 April 1990. The Texas A&M 
University Farm is in the 100-yr flood plain of the Brazos 
River, a region consisting primarily of cattle rangeland and 
cotton farmland. Typical soils in the area are Norwood silt 
loams, Norwood silty clay loams, Weswood silt loams, and 
Miller clays, on 0 to 1% slopes. 

The data was collected in a lysimeter 133 cm in 
diameter and 133 cm in depth. The soil in the lysimeter 
was a Weswood silt loam (fine-silty, mixed, thermic family 
of fluventic Ustochrepts). The soil surface was protected 
from precipitation throughout the study. 

EQUIPMENT 
Soil temperatures were measured using the copper-

constantan (type T) thermocouple. Thermocouples were 
mounted on a wooden rod at 0, 2, 4, 7,12,19, 28, 39, 55, 
75, and 95 cm, using the thermocouple junction at 95 cm as 
the reference junction (JO), as shown in figure 1. Soil 
temperatures (relative to the soil temperature at 95 cm) 
were measured at 900 s (15 min) intervals throughout the 
duration of the study. 

Soil moisture measurements were made from 5 cm to 95 
cm (at 10-cm intervals) on days 1,4, 5, and 11 of the study 

THERMOCOUPLE OUTPUT VOLTAGES 

GND VI V2 V3 V4 V5 V6 V7 V8 V9 VIO 

Q Q Q Q Q Q Q Q Q Q 

Jl J2 J3 J4 J5 J6 ]7 J8 J9 JIO 

THERMOCOUPLE JUNCTIONS Constantan Wire 

Copper Wire 

Figure l-Schematic diagram of the thermocouple circuit. 

using a neutron probe (Troxler Laboratories, model 3221). 
Average soil bulk density was determined in the laboratory 
using the standard paraffin-coated aggregate method, using 
seven soil samples taken at different depths within the soil 
profile. Soil bulk density data are shown in the next 
section, "Results and Discussion." 

FOUR REGRESSION PROCEDURES 
The procedures used to estimate the soil thermal 

characteristics are four variations of a regression approach 
proposed by Lettau (1971). In Lettau's method, equation 5 
is represented with a multilinear regression model in which 
the two spatial derivatives of on the right-hand side of 
equation 5 are the independent variables, the time 
derivative on the left-hand side of equation 5 is the 
dependent variable, and the parameters a and p are the 
linear estimators. 

Table 1 gives a description of the four variations of 
Lettau's regression approach evaluated in this study. 
Variation 1 is identical to Lettau's method, using the entire 
diurnal temperature cycle as the database for a two-
parameter regression procedure. Variation 2 assumes that 
the soil thermal conductivity is independent of depth, 
resulting in a one-parameter linear regression. Variations 3 
and 4 divide the diurnal temperature cycle into its heating 
and cooling components and perform regression analyses 
on the two smaller datasets. 

RESULTS AND DISCUSSION 
SOIL VOLUMETRIC HEAT CAPACITY 

The soil moisture profiles measured on days 1, 4, 5, and 
11 of the study are shown in Table 2. The migration of soil 

T A B L E 1. Description of four variations of 
Lettau's regression approach 

Variation Description 

1 Two-parameter regression, full diurnal cycles 
2 One-parameter regression assuming, p = 0, full diurnal 

cycles 
3 Two-parameter regression, heating cycle data only 

(5T/6t>0) 
4 Two-parameter regression, cooling cycle data only 

(6T/6t<0) 
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TABLE 2. Volumetric soil moisture profiles from 
neutron probe measurements 

Depth 
(cm) 

5.0 
15.0 
25.0 
35.0 
45.0 
55.0 
65.0 
75.0 
85.0 
95.0 

Dayl 

0.001 
0.068 
0.152 
0.231 
0.285 
0.300 
0.279 
0.289 
0.293 
0.321 

Day 4 

0.001 
0.062 
0.150 
0.229 
0.282 
0.298 
0.281 
0.293 
0.298 
0.326 

Day 5 

0.004 
0.060 
0.149 
0.232 
0.281 
0.296 
0.281 
0.295 
0.296 
0.323 

Day 11 

0.001 
0.065 
0.154 
0.228 
0.286 
0.295 
0.282 
0.295 
0.297 
0.325 

Average 

0.002 
0.064 
0.151 
0.230 
0.284 
0.297 
0.281 
0.293 
0.296 
0.324 

t 

Dayl 

Day 2 

Day 3 

Day 4 

Day 6 

Day 7 

Day 8 

Day 9 

Day 10 

moisture over time was assumed to be negligible 
throughout the study, and the average of the four soil 
moisture profiles was used for the estimation of Cp. 

The average bulk density of the soil in the lysimeter was 
determined from natural soil peds taken from the soil 
profile using the standard paraffin-clod method. The 
resulting average bulk density was 1.53 g/cm3, which is 
consistent with published values for similar soils (Colwell, 
1983). The sample standard deviation was 0.05 (n = 7) for 
the bulk density measurements. 

Figure 2 shows the soil volumetric heat capacity as 
determined from bulk density and soil moisture 
measurements. The field data were fit (r̂  = 0.98) with a 
third-order polynomial for ease in interpolating at the 
thermocouple depths. 

SOIL THERMAL DIFFUSIVITY 

Estimates of the soil thermal diffusivity were made 
using the four variations of Lettau's multiple regression 
procedure. Figures 3 through 6 show the estimated values 
of a at each depth between 2 and 75 cm. 

The increase in the variability of the estimates of a is 
primarily due to the decreased resolution in the temperature 
measurements at the lower depths. Below 39 cm, the 

> 

20 40 
— I — 

60 80 100 

Depth (cm) 

Figure 2~Variation of soil volumetric heat capacity with depth. 

Depth (cm) 

Figure 3-Estiniates of a from variation 1 of Lettau's regression 
technique. 

diurnal temperature variation was so slight that the 
analog/digital converter was often unable to resolve small 
temperature changes over the 900 s time interval; 
consequently, at the lower depths, many of the 5T/5t 
estimates took on a value of zero, causing the matrix 
equation from the regression analysis to approach 
singularity. 

Other possible sources of erratic behavior of the 
diffusivity estimates involve the violation of one or more 
of the fundamental assumptions made with the least-
squares regression procedure. The four assumptions, along 
with the terms commonly used to describe them (where 
applicable), are listed below: 

• The regression model is linear; that is, the 
independent variables are not correlated with one 
another. (Multicollinearity describes the condition in 
which this assumption is violated.) 

• All values of the dependent variable are independent 
of one another. (Autocorrelation describes the 
condition in which this assumption is violated.) 

• The values of the dependent variable are normally 
distributed. 

1 

Dayl 

Day 2 

Day 3 

Day 4 

Day 6 

Day? 

Day 8 

Day 9 

Day 10 

Depth (cm) 

Figure 4-Estimates of a from variation 2 of Lettau's regression 
technique. 
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J5 

Day! 
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Day 3 

Day 4 

Day 6 

Day? 

Day 8 

Day 9 

Day 10 

Depth (cm) 

Figure 5~Estimates of a from variation 3 of Lettau's regression 
technique. 

• The variance of the dependent variable is the same 
for all values of the independent variables. (When 
this condition is satisfied, the data set is said to be 
homoscedastic) 

The independent variables in equation 5, the first and 
second spatial derivatives of temperature, are closely 
related to one another, making the regression model 
inherently multicollinear. In simple terms, that means that 
the regression model is "unable to separate out the effect of 
each individual variable" (Hoshmand, 1988) on the 
dependent variable, 5T/5t. Consequently, each regression 
coefficient will reflect not only the influence of its 
corresponding independent variable, but also the influence 
of the other (presumably unrelated) independent variables. 

Hoshmand (1988) also states that autocorrelation is 
often observed when time series data are used in regression 
analysis. Such is the case with the regression procedure 
used in this study. Figure 7, a plot of residuals as a function 
of time from a two-parameter regression performed on data 
at 7 cm on day 7, shows an obvious time-dependence of the 
residual, and is an example of a graph which suggests the 
presence of autocorrelation. In this case, the time-
interdependence of one or more independent variables is 
contributing to the model error. 
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Time (sec) 
Figure 7-Tinie dependence of the residual from the regression 
procedure at 7 cm, day 7. 

In order to simplify the evaluation of the four options, 
the daily estimates for a from each regression approach 
were averaged, yielding the summary in figure 8. It is 
evident from figures 5 and 8 that variation 3 gives more 
erratic results than any of the other three variations at all 
depths. The extreme and unpredictable behavior of 
variation 3 at the upper depths is due to the relatively small 
size of the database generated by selecting only those 
ordered triples for which 6T/5t > 0; while a full diurnal 
regression with At = 900 s generated 96 data points, a 
heating-cycle regression at the upper depths with the same 
time interval generated between 30 and 40 data points, 
depending upon the shape of the surface temperature wave. 
(Heating-cycle fractions of such diumal waves as might be 
encountered on hot, sunny days with low humidity may 
contain 30% or fewer of the diumal data points.) Such a 
limitation would be remedied, of course, by decreasing the 
time interval between temperature measurements. For the 
purposes of this study, however, the predictions of the 
heating-cycle regression were deemed unreliable. 

Dayl 

Day 2 

Day 3 

Day 4 

Day 6 

Day 7 

Day 8 

Day 9 

Day 10 

u 

a> CA 
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^ CIL4 

< 

Depth (cm) 

Figure 6-Estimates of a from variation 4 of Lettau's regression 
technique. 

Depth (cm) 

Figure 8-A summary of the estimates of a from the four regression 
procedures. 
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Figure 9-SoiI temperature at 12 cm, as predicted by the finite 
difference model on day 7. 

Evaluation of the remaining three regression options 
was based upon the agreement between field temperatures 
and temperatures predicted by the finite-difference model. 
Figure 9 shows that the modeled temperatures using the 
diffusivity and conductivity functions estimated by the 
cooling-cycle regression (variation 4) most accurately 
reproduce field measurements, which is to be expected 
since the latent heat fluxes, for which the model does not 
account, are small during the cooling phase. The one-
parameter regression (variation 2) reproduced field 
conditions least accurately. Average values for the soil 
thermal conductivity, calculated as a product of the soil 
thermal diffusivity (a, estimated from the cooling-cycle 
regression) and the volumetric heat capacity (Cp, 
interpolated from field measurements shown in fig. 2), are 
shown in Table 3. 

Figures 10 and 11 show the measured and modeled 
temperatures at 12 cm on days 1 and 3 using the average 
diffusivity function from the cooling-cycle regressions in 
the numerical model. The agreement in both cases was 
good; however, the amplitudes of the modeled temperature 
waves were consistently smaller than those of the field 
temperatures, indicating that the numerical model tended to 
underestimate the transfer of thermal energy between soil 
layers. This indicated that the actual field diffusivities were 
probably higher than those used in the numerical model. 

The numerical model was then run with the diffusivity 
function estimated on day 1 by the cooling-cycle 
regression. Figures 12 and 13 show the measured and 

Field Data 

Modeled Data 

40000 60000 

Time (sec) 
80000 100000 

Figure lO-Measured and modeled temperatures at 12 cm, day 1. 

modeled temperatures at 19 cm for days 7 and 8. This 
diffusivity function, which consistently overestimated the 
thermal transfer between soil layers, was determined to be 
a suitable upper boundary for a "solution envelope" in 
which the true diffusivity function would be expected. 

SUMMARY AND CONCLUSIONS 
A method for in situ determination of the soil thermal 

characteristics for nonhomogeneous moisture conditions 
was presented. Soil volumetric heat capacity was 
determined from the average soil bulk density and soil 
moisture profiles using a weighted-average technique 
proposed by deVries (1963) and simplified by Campbell 
(1985). Four variations of a multiple regression technique 
proposed by Lettau (1971) for estimating the soil thermal 
diffusivity were evaluated. Field temperature data were 
compared with temperatures predicted by a finite 
difference model of the expanded heat equation to 
determine which variation produced the best estimates of 
a. The upper and lower boundaries were described by 
Dirichlet boundary conditions (time-variant at the surface, 
constant-temperature at the lower boundary). 

In all cases, variability in estimates of the regression 
coefficients increased with depth due to the decreased 
resolution of the temperature measurements; 39 cm 
appeared to be the practical limit for all of the four 
variations of Lettau's regression technique. Consequently, 
comparisons among the four based upon estimates of 
thermal diffusivity below 39 cm were deemed 
inconclusive. Above 39 cm, however, the application of 
Lettau's technique using only temperature data from the 
cooling-cycle (5T/5t < 0) portion of the diurnal temperature 

TABLE 3. Summary of estimated soil thermal properties using 
the cooling-cycle regression 

Depth 
(cm) 

2 
4 
7 
12 
19 
28 
39 
55 
75 

Cp 
(J/cm^Q 

1.151 
1.257 
1.405 
1.628 
1.891 
2.154 
2.379 
2.559 
2.638 

a 
(cm /sec) 

0.0027 
0.0024 
0.0051 
0.0073 
0.0107 
0.0106 

0.0115 
0.0184 
0.0096 

X 
(W/cmC) 

0.0031 
0.0030 
0.0072 
0.0118 
0.0202 
0.0228 
0.0274 
0.0471 
0.0253 

0 
u 

^ 
e 
s 
H 
o 
on 

Field Data 

Modeled Data 

80000 100000 20000 40000 60000 

Time (sec) 

Figure 11-Measured and modeled temperatures at 12 cm, day 3. 
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Figure 12-Measured and modeled temperatures at 19 cm, day 7. 

u Field Data 

Modeled Data 

20000 40000 60000 80000 

Time (sec) 

Figure 13-Measured and modeled temperatures at 19 cm, day 8. 

wave was shown to generate the best results. There are at 
least two apparent reasons for that result: 

• The physical model used to describe the process of 
thermal transfer within a soil-air system did not 
account for the transfer of latent heat through 
moisture flux, especially vapor flux; in essence, the 
model assumes zero vapor flux, which would be 
most nearly true during the cooling cycle at the 
surface. Therefore, the use of only cooling-cycle data 
removes the data which vapor fluxes would affect the 
most. 

• The presence of higher-order (than diurnal) 
harmonics directly affected the accuracy of a 
numerical procedure which discretizes the domain. 
Finite-difference discretization in time obscured 
important short-term temperature variations which 
tended to arise most prominently during the heating 
cycle. In addition, the curvature of the time-
temperature relationship tended to be less during the 
cooling cycle than during the heating cycle; 
consequently, the cooling cycle would be most suited 
to the finite-difference method of estimating 6T/5t. 

While the primary predictive value of the regression 
approach seems to have been affirmed, the statistical 
shortcomings of the approach must not be ignored, 
especially the violation of fundamental assumptions for a 
regression model. Since the terms 5T/6z and 52T/5z2 are 
correlated by the derivative operation, the treatment of 
8T/8Z and 82T/8z2 as independent variables in a regression 
procedure is statistically invalid. Also, the raw data from 
which the predictors arise are tainted by serial correlation; 
that condition, however, might be remedied through the use 
of autoregressive techniques. The true value of the 
regression model discussed in this article is limited to the 
prediction of the thermal characteristics, and no 
conclusions with respect to causality, confidence intervals, 
or other statistical inferences should be made. 
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