

Symposium C-7

Resilience and Resilience-based Management Derived from Long-term Vegetation Records

David D. Briske, Texas A&M University College Station, Texas, USA

Current Status of Resilience?

RESILIENCE:

An Operating System for the 21st Century?

Policy Review

The End of Sustainability

MELINDA HARM BENSON

Department of Geography & Environmental Studies, University of New Mexico, Albuquerque, New Mexico, USA

ROBIN KUNDIS CRAIG

S. J. Quinney College of Law, University of Utah, Salt Lake City, Utah, USA

Forum

Feature Issue: Some Thoughts on Resilience

What do you mean, 'resilient'?

Dave Hodgson, Jenni L. McDonald, and David J. Hosken

Ecosystems (2006) 9: 1-13 DOI: 10.1007/s10021-003-0142-z **E**COSYSTEMS

Mini Review

Ecological Thresholds: The Key to Successful Environmental Management or an Important Concept with No Practical Application?

Peter M. Groffman, 1* Jill S. Baron, 2 Tamara Blett, 3 Arthur J. Gold, 4

Presentation Objectives

Describe resilience and resilience-base management

- > Assess resilience with long-term empirical data
 - ✓ Three grassland sites
 - ✓ Two sagebrush steppe sites
- > Develop inferences for ecosystem management

Resilience Theory

Capacity of ecosystems to absorb disturbances and reorganize while undergoing change so as to retain similar function, structure, identity and feedbacks.

- Engineering resilience—rate of ecosystem recovery within a single equilibrium state.
- Ecological resilience— existence of multiple equilibrium states for a specific ecological site.

Walker et al. 2004 E&S

Potential Community Dynamics

Paucity of Empirical Evidence

Synthetic approach of observation, experimentation, concept models, simulation, and narrative is required.

- > Natural experiments
- Soil isotopic signatures
- Vegetation reconstruction
- Historic monitoring records

Bowman et al. 2015 TREE

Vegetation Records

Three Grassland Records

- > Stavely, Alberta; 1949-1981; n=27 plots x 28 census dates
- Fort Hays, Kansas; 1932-1972; n=47 plots x 41 census dates
- Jornada, NM; 1915-1979; n=69 plots x 59 census dates

Two Sagebrush Steppe Records

- ➤ Idaho National Lab; 1950-2006; n=34 plots x 10 census dates
- ➤ US Sheep Station; 1930-1957; n=26 plots x 29 census dates

Data Analysis

Dr Sumanta Bagchi

Center Ecological Studies, Indian Institute Science, Bangalore

Identify unique communities in vegetation record

- Cluster analysis & Bayesian Information Criteria (BIC)
- > Tested w/ Analysis of Similarity & DCA performed

Assign individual plots to unique communities

Bray Curtis dissimilarity index & Correspondence analysis

Categorize community transition attributes in time

> Frequency, magnitude, directionality and temporal scale

Ecological Applications 2012 22(2):400

Rough Fescue Grassland

Relative Species Abundance

Plant Community Identification

Stavely, Alberta

Spp. Dissimilarity 21-40%; X = 33%

Asymmetric transitions from comm D to C and B to A

Parrys's oatgrass being replaced by Rough fescue

Bagchi et al. in preparation

Fort Hays, Kansas

Spp. Dissimilarity 18 - 68; X = 31

Large, symmetrical transitions among comm J & L, and J & K

Comm M highly stable

Jornada, New Mexico

Spp. Dissimilarity 16-92%; X=30%

Black grama shows major decline in mid-record following drought of 1950's.

Loss of major dominant contributed to a threshold

Bagchi et al. in preparation

Grassland Results

- > Highly dynamic, but resilient.
 - ✓ Numerous community transitions, but often symmetrical
 - ✓ High species dissimilarity common to transitions
 - ✓ Minimal evidence for existence of *thresholds*
- ➤ High dissimilarity due to fluctuation of *subordinate* species within basins of attraction (i.e., resilience) anchored by few *dominant* species (i.e., resistance).
- > Transitions among subordinate species associated with above average precipitation, whereas transitions among dominants were related to severe drought.

Sagebrush Steppe – Idaho, USA

Cheatgrass - Bromus tectorum

Exotic, invasive annual grass that increases fire frequency to reduce native species

Relative Species Abundance

Cheatgrass vs Native Species

Temporal Pattern of Transitions

Sagebrush Steppe Summary

- > Cheatgrass is a 'biotic driver' impacting resilience
 - ✓ Interaction with precipitation patterns
- > Community transitions occurred in a 10 yr window
 - ✓ Associated with *increasing* cheatgrass density
- > Feedbacks rapid and unrelated to fire
 - ✓ Likely induced by plant-soil processes
- > Threshold evident at only the warmer, drier site

Management Implications

- Proportion of dominant and subordinate species may represent an important grassland state variable.
- ➤ Identify thresholds with caution because high, reversible species dissimilarly in all grassland records.
- ➤ Recognition of temporal scale critical to distinction of transient behavior and alternative stable states.
- Are vegetation thresholds indicative of functional thresholds?

Current Status of Resilience?

- ➤ Useful alternative to stability that explains dynamics within persistent systems.
- > System dynamics are mechanistically bounded by feedbacks mechanisms and controlling variables.
- ➤ Should resilience be operationalized as a tool for conservation and ecosystem management?

