Vegetation Responses to Grazing: Have Unifying Principles Emerged?

David D. Briske

Rangeland Ecology and Management
Texas A&M University
College Station, Texas

Presentation Objectives

- Have unifying principles emerged to describe vegetation responses to grazing?
- Do these principles support the design and application of specific grazing systems?
- What are the ecological mechanisms underpinning these answers?

Unifying Principles Describing Vegetation Responses to Grazing

- Chronic, intensive grazing is detrimental
- Species composition can be modified
- Forage quality can be altered
- Plant production can be affected

Briske and Heitschmidt 1991

Occurrence of Grazing Optimization

- Occurs in about 25% of comparisons
- Unpredictable and difficult to manage
- Requires long rest periods to occur
- Limited in commercial grazing systems

Belsky 1987 Milchunas and Lauenroth 1993

Benefits of Intensive Grazing Systems

- Increased control of grazing patterns
- Improve species composition
- Enhance forage quality
- Promote plant production

Briske and Heitschmidt 1991 Heitschmidt and Taylor 1991

Unifying Principles do <u>not</u> Support Intensive Grazing Systems

- Few advantages exist for intensive compared to continuous grazing systems.
- Stocking rate is more important than type of grazing system.
- Management variables appear to effect vegetation independently of grazing system.

Hart and Norton 1988 Holechek et al. 2001

Conclusion One

- Assumed benefits of intensive grazing have been overextended.
 - Grazing selectivity continues to occur
 - Forage quality is not always improved
 - Forage production is not greatly enhanced

Hart and Norton 1988 Holechek et al. 2001

Why are Grazing Systems Marginalized?

- Stocking rate = animal #/ land area/ unit time
- Grazing pressure = forage demand/ forage available
- Grazing systems designed to redistribute grazing pressure in time and space

Heitschmidt and Taylor 1991

Conclusion Two

- Ecological constraints on grazed ecosystems override unifying principles
 - Grazing management must optimize competing ecological processes
 - i.e., leaf area and harvest efficiency
 - Redistribution of GP has less effect as plant growth and predictability decrease with aridity
 - i.e., reserve forage between growth periods

Briske and Heitschmidt 1991 Holechek et al. 2001

Conclusion (hypothesis?) Three

- Experimental grazing research has only provided part of the answer
- Intensive grazing systems affect management decisions more than ecological processes
 - Commercial benefits of grazing systems are often inconsistent with research results
 - Alter management goals and approaches
 - Promote enterprise restructuring to replace capital inputs with intensive management

Take Home Message

- Grazing management introduced to limit destructive grazing practices.
- Created <u>impression</u> that continuous grazing is unsustainable.
- Grazed ecosystems are influenced by a similar set of environmental constraints.
- Grazing systems modify management decisions apart from ecological processes.

Hart and Norton 1988