Development of Comprehensive Grazing Policy Guidelines: A Case for Adaptive Collaboration within the Rangeland Profession

David D. Briske Justin D. Derner

Rangeland Ecology and Management
Texas A&M University & USDA-ARS
High Plains Grassland Research Station

Symposium Objectives

- Explore means to strengthen science management interactions in SRM.
- Evaluate grazed ecosystems as socialecological systems to emphasize these critical linkages.
- Develop a perspective of adaptive collaboration to promote meaningful dialogue regarding grazing systems.

Speakers and Titles

- D. Briske Context and perspectives on the grazing debate.
- N. Sayre Roles of science and management within the profession.
- J. Derner What does the experimental evidence tell us?
- F. Provenza Limits of the experimental evidence.
- B. Budd Management perspective of prescribed grazing.
- L. Huntsinger Grazing management within the context of social-ecological systems.
- M. Fernandez-Gimenez Strengthening sciencemanagement linkages by collaborative adaptive management.

Two Valuable Knowledge Sources

 Experiential knowledge associated with management of grazing systems.

Experimental data derived from grazing experiments by researchers.

Experimental Data

Majority (84-92%) of experiments show no advantage of rotational grazing for plant and animal production.

Suggests ecological processes are minimally effected by grazing systems.

Briske et al. 2008

Managerial Documentation

- Strong support for rotational grazing.
- Minimal documentation of potential benefits.
- Source of potential benefits uncertain, but ecological processes often emphasized.

"A Failure to Communicate"

- Two knowledge sources may not be mutually exclusive.
- Ecological process may be marginally affected.
- Management benefits may be realized.

Roles of Science and Management

- Science can help deal with subjectivity by using methods to minimize human influences and frailties (Stern 2005 BioScience 55:976).
- "It's what we know that ain't so that get us in trouble" - Mark Twain

Misconception: Researchers

- Science provides the complete and final solution to all issues.
- Experimental data invalidates rotational grazing systems and adaptive management.
- Experiential information is not a valid source of knowledge.

Misconceptions: RG Advocates

- Short-term rest consistently benefits vegetation and ecosystems.
- Multiple grazing events with a cycle are eliminated by rotational grazing.
- Experimental data have no relevance to managed ecosystems.
- Continuous grazing does not involve adaptive management.

Components of Grazed Ecosystems

- Weather
- Stocking rate
- Human dimensions
 - i) adaptive management i.e., forage inventory, drought management, animal care
 - ii) agribusiness/economics i.e., labor cost, cost/animal
 - iii) goals, capabilities, and values
- Grazing systems
 - i) short successive rest
 - ii) improved animal distribution & harvest efficiency
 - iii) moderate SR required to maintain animal production

RANGESTOCK

More Relevant Questions

- Can adaptive management be more effective in rotational systems?
- What management component is most responsive?
- What management skills are most important?
- What percentage of managers possess these skills?
- How can these skills best be shared?

Professional Implications Beyond Grazing Systems

- Expand professional culture to more effectively address conflict resolution.
 - Increase communication and trust.
 - Promote management science interactions.
- Establish a research agenda that emphasizes adaptive management.
 - Central to the profession, but little addressed.
 - Why is this the case? Viewed as unnecessary?

Option One: Retain Status Quo

Retain two independent interpretations of grazing systems.

- 1. Maintain and potentially increase divisiveness.
- 2. Reduce effectiveness in addressing grazing issues.
 - Advocacy without documentation and in direct opposition to experimental data.
 - Human inability to visually assess ecosystem responses over the long-term.
- 3. Potential for less effective management and policy recommendations.

Conclusion: Unacceptable and indefensible position.

Option Two: Resolve Controversy

Link experimental data and management perceptions.

- Science does not provide the final answer, but it provides important benchmarks.
- Document purported benefits with monitoring data and records of management decisions and activities.
- Strengthen profession by providing unified and effective management and policy recommendations.
- Conclusion: Only viable professional option.

What's at Stake?

- Internal disputes question our professionalism, and marginalizes our effectiveness.
- Our profession faces multiple challenges; our collective inputs are required to address them.
- We can not let controversies languish for decades and divert us from this responsibility.

