State-and-transition Models: Current Status and Future Direction

David D. Briske

Ecosystem Science & Management

Texas A&M University

Professional Reinvention

Ecological

Rangeland Profession Society for Range Management

Woodland

Multiple States

State-and-transition Model Framework

Stringham et al. 2003

Presentation Objectives

- Explore linkage between STMs and resilience
- Assess the current effectiveness of STMs
- Investigate role of empirical data in STMs
- Comment on the future direction of STMs

Thresholds vs Resilience

Resilience – degree of modification that an ecosystem can absorb prior to transform to an alternative state.

Threshold – resilience limit of an ecosystem.

Resilience-based Management

Threshold
Feedback
switch
Restoration
pathway

Modified from Briske et al. 2008

Positive and Negative Feedbacks

Grassland State Threshold

Progression

Woodland State

-eedback Switch

Positive Feedbacks

- woody plant cover
- coarse fuel loads
- propagule limitations

Negative Feedbacks

- grassland productivity
- fine, continuous fuel loads
- propogule limitations

Mountain Clay Ecological Site, Oregon

Reference State

Indicators: High perennial grass cover, dispersed sagebrush cover, minimal juniper and bare soil. Feedbacks: Herbaceous cover retains water on site and provides fuel to support a fire return interval of less than 50 years.

At-risk Community Phase: Herbaceous cover reduced, sagebrush decadence, juniper visible and bare soil patches increasing, potential fire frequency reduced.

Trigger: Drought and intensive grazing promote juniper establishment through reduced fire frequency.

Threshold: Juniper attains a height and density that reduces fine fuel load and fire-induced tree mortality. Large, inter-connected bare soil patches occur with redistribution of nutrients/soil beneath juniper canopies.

Juniper Sagebrush Idaho Fescue Bluebunch wheatgrass Juniper Idaho Fescue Sandberg bluegrass

Restoration Pathway: Bunchgrass (BG) density > 1 m² requires mechanical juniper removal only;

BG density < 1 m² requires juniper removal and grass reseeding, if soil is intact.

Alternative State

Indicators: Mature juniper dominant, Idaho fescue only beneath juniper canopies, large interconnected bare soil patches, sagebrush decadence.. *Feedbacks:* Juniper dominates resource use, water and wind redistribute soil and nutrients beneath juniper, minimal grass and sagebrush establishment.

Effectiveness of STMs

Say, aren't here supposed to be holes in this mask!

How Effective are STMs?

- Survey 47 rangeland professionals
 - 26 Agency Managers
 - 21 Research Scientists
- Purposes of STMs
- Model Strengths
- Model Weaknesses
- Construction and Review

STM Purposes

- Guide management (87%)
 - Managers 92%; Researchers 81%
- Describe ecological dynamics (70%)
 - Managers 65%; Researchers 76%
- Identify testable hypotheses (40%)
 - Managers 12%; Researcher 76%
- Communications tool (38%)
 - Managers 35%; Researchers 43%

STM Strengths

- Improve decision making (87%)
 - Managers 92%; Researchers 81%
- Describe system dynamics (70%)
 - Managers 65%; Researchers 76%
- Improve communication (38%)
 - Managers 35%; Researchers 43%
- Identify relevant questions (34%)
 - Managers 19%; Researchers 52%

STM Weaknesses

- Insufficient information (43%)
 - Managers 30%; Researchers 57%
- Models overly complex (26%)
 - Managers 38%; Researchers 10%
- Lack of time and resources (21%)
 - Managers 27%; Researchers 14%
- Potential misrepresentation (17%)
 - Managers 8%; Researchers 29%

Construction & Review

- Expert knowledge critical (43%)
 - Managers 47%; Researchers 37%
- Minimal empirical knowledge (43%)
 - Managers 34%; Researchers 61%
- Model inconsistency (26%)
 - Managers 34%; Researchers 13%
- Mechanisms for validation (87%)
 - Managers 87%; Researchers 88%

Areas of STM Refinement

- Management vs ecological drivers
- Role of expert vs empirical knowledge
- Criteria to define thresholds
- Appropriate model complexity
- Model review and revision

Value of Empirical Data

"Then a miracle occurs" !!

Attributes Idaho Data Sets

- Idaho National Lab
- Plant density
- 34 m² plots
- Sampled 10 times
- 1950 2006
- N = 340 samples
- Species = 55
- MAP = 220 mm
- Idaho Falls ID

- US Sheep Station
- Plant density
- 15-26 m² plots
- Sampled 23 times
- 1930 1957
- N = 545 samples
- Species = 54
- MAP = 300 mm
- Dubois ID

Data Analysis

Dr Sumanta Bagchi

- Identify communities with cluster analysis
- Verify community membership against species dissimilarity
 - BIC-parsimony, ANOSIM, SIMPER
- Record community transitions in time
- Categorize transition frequency and attributes

Species Composition

Transition Dissimilarity

US Sheep Station

Idaho National Lab

Empirical STMs

Community Transitions

Temporal Dynamics

Summary Idaho Data Sets

- Transitions occurred in a 10 yr window
 - Associated with increasing cheatgrass density
- Transitions decreased at maximum density
 - Alternative stable state formed
- Cheatgrass is a 'biotic trigger'
 - Interaction with precipitation patterns
- Feedbacks rapid and unrelated to fire
 - Likely induced by plant-soil processes
- Similar patterns occurred at both sites

Value of Empirical Data?

- Empirical data can support STMs:
 - Describe community transitions
 - Identify temporal scales
 - Assess feedback mechanisms
 - Refine resilience hypotheses
- Vegetation records insufficient:
 - Adaptive management best approach
 - Monitor management outcomes
 - Consider autogenic & climatic processes

Future of STMs

- Strong, consistent support among stakeholders
- Continue resilience-based foundation
- Adaptive management supported w/ monitoring
- Science-management partnerships

