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ABSTRACT 

 
We quantify and compare model uncertainty derived from sediment provenance or 

fingerprinting models using mathematical and statistical formulation rooted in the 
traditional Optimization and Bayesian Markov Chain Monte Carlo Simulation 
(MCMC) schemes. An ensemble prediction of soil yield percentage estimation from 
sub-watersheds of the 60 square-mile urbanized Buffalo Bayou Watershed of 
Houston was accomplished by forcing Markov chain rainfall time series windows 
generated by USDA’s CLIGEN weather generator module of the Water Erosion 
Prediction Project (WEPP) software. In doing so, we also attempt to present a 
decision support tool that allows us to tell how much of a land area may be 
considered in simulation such that the model resolution definitively captures the 
contribution of soil from different sub-watershed sources. This was done by forcing 
the Bayesian model with varying lead time rainfall time series. Results for a given 
watershed contribution area shows that the model uncertainty remains constant after a 
certain lead time forecast. This allows the user to decide on how much land area to 
consider and when to stop the simulation on reasonable ground.  
 
INTRODUCTION 

Water flow induced soil erosion occurs from sources in a watershed during high 
rainfall events. The eroded soil transports to the watershed outlet. Ensemble 
predictions of soil yield fraction estimates from sub-watersheds are prone to 
uncertainty. The two sources of uncertainty investigated in this work are: (1) the 
physically based water erosion model uncertainty and (2) the uncertainty derived 
from the variable duration of rainfall time series. This paper focuses on the first. The 

1790World Environmental and Water Resources Congress 2015:
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dependency on frequentist approach is investigated and compared with a scientifically 
and statistically sound Bayesian model. The research framework consisted of 
computer modules creation with the aid of field data to validate those models. The 
research elements are listed in Figure 1. 

 
 

 

 

 

 

 

Figure 1. Research Elements  

Specifically, the inter-disciplinary work attempted to find the effect of episodic 
rainfall on watershed-scale soil erosion yield fraction estimates from the North and 
the South of the Buffalo Bayou Harris County, Texas. This leads to statistically 
independent soil erosion model runs using WEPP with rainfall time series of various 
lengths to ascertain the effect of episodic nature of rainfall on the model prediction. 

The work touches model parameter uncertainty associated with sediment 
fingerprinting technology in a Bayesian framework and compares that with tradition 
optimization based Monte Carlo Simulation (MCS). The motivational research 
hypothesis is outlined in the next section. The work builds on the noted recent work 
in this area by Fox and Papanicolaou (2008) where the authors attempted to identify 
eroded soil source from up to two land-use types by using Bayesian Markov Chain 
Monte Carlo (MCMC) simulation method using biogeochemical soil properties or 
tracers. 

This study extends the analysis to include erosion model parameter uncertainty 
under episodic rainfall trends in the watershed. The Bayesian MCMC framework has 
proven to be a superior tool that is mathematically robust compared with the 
traditional MCS, and provides conservative response standard deviations (or 
uncertainty). Whereas, the MCS method is highly dependent on random selection of 
statistical properties (e.g., sample mean) and results in lower response standard 
deviations with “user-defined” increasing number of MCS iterations with no 
scientifically or statistically valid stopping criteria. The rainfall lead time based 
method in conjunction with the Bayesian model of Fox and Papanicolaou (2008) 
presented here has the advantage of informing the soil the user when to stop a model 
simulation run and how much land contribution area to work with for a given 
sediment source “un-mixing” model. 

 
 

 

Episodic Rainfall 

1. Physical and Biogeochemical Soil Properties 
Assessment 

2. Rainfall Trend Assessment 
3. Bayesian MCMC and Traditional MCS 

Method Formulation for Uncertainty Analysis 
4. Uncertainty Quantification and Monitoring 
5. Decision Support System (DSS) Integration 

Framework Development 
Soil Erosion 
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RESEARCH HYPOTHESIS 
The variable nature of soil erosion, exacerbated by episodic rainfall trends on a 

large watershed, imposes a limit on model predictability as unavoidable errors in the 
initial state grow rapidly and render the model outputs useless. The most successful 
means of confronting this obstacle is to run a collection, or ensemble, of data or its 
statistics (mean and standard deviation), each starting from a slightly different initial 
state. The combined output can then be used to draw probabilistic inference about the 
prediction variable which in this study is the soil yield fractions from land sources.  

A gap exists in the quantification and the comparison of estimated uncertainties 
from the Bayesian and the frequentist optimization methods or Monte Carlo 
Simulation. The study illustrates, through deterministic and stochastic model runs that 
the scatter in the deterministic soil yield data obtained from water erosion model of 
the USDA under various land slope conditions, lead to model uncertainty in the 
posterior distribution of the regression weights used in the stochastic Bayesian 
ensemble soil yield fraction prediction model. The regression weights are directly 
dependent on the statistically independent soil yield estimates from physical soil 
erosion model e.g., WEPP.  

The study sought answers to the questions: (1) Is there a scientifically and 
statistically sound interdisciplinary approach utilizes the spatially variable soil 
biogeochemical properties to estimate soil yield fractions, and the corresponding 
uncertainty?; (2) If so, how is it superior to any frequentist approach that may require 
high resolution statistical definition of raw data which may not be available due to 
environmental and anthropogenic constraints?; and (3) What improvement is 
achieved to advance research in the subject?   

 
RESEARCH FRAMEWORK 

Figure 2 illustrates the concept of sediment fingerprinting [1]. The figure illustrates 
erosion occurance over a watershed during a high rainfall event. Soil erodes from two 
land-use sources, source 1 and source 2, and the soil is transported to the watershed 
outlet where eroded-soil is collected throughout the duration of the event using in situ 
suspended eroded-soil trap. The traps function as integrated samplers and soil settles 
within the traps over the duration of the erosion period (Phillips et al., 2000). 

 

 

Figure 2. Source and Eroded-Soil Locations for Sediment Fingerprinting  

1792World Environmental and Water Resources Congress 2015:
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Figure 3. Research Framework (Karim, 2014; Ahmed et al., 2011) 

Episodic  
Rainfall Events 

Field Sampling and  
δ13C, C/N Ratio Analyses; 

Statistical Analysis of 
δ13C, C/N Ratio Distribution 

(Source Soil Data) 

2. Uncertainty Analysis 

1. Stable Isotope Analysis & 
Water Erosion/Un-mixing 

Module 
 

Consider Equal 
Regression Weights 

(Deterministic Model) 

Estimate Standard Deviations 
of Soil Yield Fractions from 

Un-Mixing Model Run  

Estimate Standard Deviations 
of Soil Yield Fractions from 
Un- mixing Model Run for 

Different Rainfall Series 

Consider Actual 
Regression Weights from 
Soil Yield Estimates for 
Different Rainfall Series 

(Stochastic Model) 

Compare Standard Deviations of 
Estimated Soil Yield Fractions from the 

Deterministic and Stochastic Models  

Assess Soil Yield Fraction 
Estimation Results  

 

Develop Rainfall-runoff 
& SOC Release 

Relationship 
(Statistical Analyses) 

Develop Statistical  
Un-Mixing Model; 

Identify Soil Sources 

Collect Mixed Suspended 
Sediment Sample;  

Conduct 
δ13C, C/N Ratio Analyses 

Run Water Erosion Model: 
USDA WEPP; 

Calibrate per Soil Source and 
Quantity Regression Weights for  

the Un-Mixing Model 
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To apply fingerprinting method, two sources for tracers have been considered: (i) 
tracer data from land-use sources, and (ii) tracer data from eroded-soil. After 
analyzing the source- and eroded-soils for their tracer values, the contribution of 
eroded-soil from each source is estimated via Bayesian computational statistics.  

Noteworthy, the decision on whether to use δ13C or δ15N in the statistical models 
depends on which of these two tracers show good correlation between the source and 
the mixture sample data. Denitrification can lead to enriched δ15N in the mixture 
sample from riparian corridor compared with that from the source samples. In such 
cases, the correlation in isotope readings between the source and mixture sample 
location can be invalid. There was indication of such denitrification in this study that 
needs field work based validation that was beyond the scope of the study. δ13C was 
therefore chosen. 

The use of multiple tracers leads to an over-determined system of mass-balance 
equation matrix leading to multivariate distribution of the tracers. The problem can be 
conveniently solved using Bayesian Markov Chain Monte Carlo (MCMC) simulatin. 
Figure 3 illustrates the general integration framework. The efforts focused on the 
integration of Markov Chain rainfall series driven Water Erosion Prediction Project 
(WEPP) model (USDA, 1995) with its statistical relationship to spatial soil loss.  
 
FORMULATION 

Spatial variation of tracer data leads to model prediction uncertainty. Under the 
traditional nonlinear least square optimization method, due to the different ranges of 
the magnitudes of various tracer data, it is not statistically sound to conduct 
uncertainty analysis that considers simultaneous simulation of jointly distributed data. 
The “un-mixing” model for two sub-watershed sources and one tracer (e.g., δ13C) can 
be formulated as:  
          

            

where, Z represents mixture sample trace data, X stands for source sample mean, and 
P is the fraction contributed by the two sources. Subscript 1 and 2 stand for source-1 
and 2, respectively. This un-mixing mass balance model becomes an over-determined 
system when more than two tracers are considered because this leads to more 
equations than unknowns. Two statistical solution schemes can be considered to solve 
the over-determined system: (1) frequentist approach based on least square error 
minimization (Yu and Oldfeld, 1989; Collins et al., 1997; Krause et al., 2003), and 
(2) Bayesian Markov Chain Monte Carlo (MCMC) simulation approach (Fox and 
Papanicolaou, 2008). 

The matrix form of the mass balance equation with error terms to compensate for 
over-determined system is: 

       

  

1794World Environmental and Water Resources Congress 2015:
Floods, Droughts, and Ecosystems © ASCE 2015 

 World Environmental and Water Resources Congress 2015 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

T
E

X
A

S 
A

&
M

 U
N

IV
E

R
SI

T
Y

 o
n 

10
/0

1/
15

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



 
 

6 

 

where, T is the total number of tracers, and K the number of sources. P denotes 
sources and ɛt is an error term introduced to solve the over-determined condition. Z is 
the mixture tracer data vector. The authors of [7] and [8] derived confidence intervals 
for the estimated fractions from each source, Pk, by using Monte Carlo sampling to 
draw from tracer source and mixture distributions. But, Monte Carlo sampling 
requires prior knowledge on distribution of sample data (Billheimer, 2001). It is not 
always possible to collect large number of samples from the field, especially in urban 
areas with access constraints. Therefore, it is assumed that the uncertainty in the 
population mean of each source property can be represented by Student’s t-
distribution with a confidence interval. To circumvent this constraint, Fox and 
Papanicolaou (2008) applied a Bayesian MCMC method with low informative prior 
by treating the parameters as random variables and then training the posterior 
distribution of all model parameters. 

Bayesian MCMC framework not only allows multi-variate models but also 
facilitates the representation of more than one erosion process within the same sub-
watershed or source by an erosion process parameter. The tracer data from sediment 
sources, x, can be statistically represented by multivariate normal distribution with 
each tracer data value, i, and the index of soil erosion process, j, and the source type, 
k (Fox and Papanicolaou, 2008): 

                                                           
In Bayesian statistics, the mean, μ and covariance matrix, COV(x) will have 

distribution of their own which are given multivariate normal (MVN) and Wishart 
distributions, respectively, to facilitate MCMC simulation using Gibbs sampling in 
WinBUGS (Ntzoufras, 2009): 

 
where, θ, τ, ω and ρ can be specified as non-informative priors in the model. 
Similarly, the tracer data at all confluences can be represented by multivariate normal 
distribution: 

                                                                    
with z the vector of soil mixture tracer values, and Γ ~ Wishart (Λ, ς). The parameter 
φ is specified in the deterministic equation for the mass balance inversion as (Fox and 
Papanicolaou, 2008):  
                    
  
where, vk is the soil erosion type identifier, and Pk has a Dirichlet distribution with 
parameter λk: 
      

SOURCE OF UNCERTAINTY 
A set of erosion process parameters, αjk considered by Fox and Papanicolaou 

(2008) are the weights of multiple linear regression equation for soil fraction yield. 
This weight, αjk, is estimated by: 
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where, S is the sediment yield. The erosion type identifier vk is then αjk, times xjk. vk is 
given a multivariate normal distribution and is a function of the episodic erosion 
parameter, β (Fox and Papanicolaou, 2008). In this study, the parameter of 
uncertainty is the erosion process parameter, α. The episodic erosion parameter is 
related to any grab sample after an episodic rainfall event. Such a grab sample is 
considered a member of the distribution of the soured sample tracer data. Over time, 
it is assumed (Fox and Papanicolaou, 2008) that the entire watershed contributes to 
soil erosion and thus, a constant value of β is used in the un-mixing model. This 
significant assumption results in the same standard deviation and Monte Carlo (MC) 
errors for soil yield fractions from two sources (Fox and Papanicolaou, 2008). 

The sediment yield, S, was estimated using physical process-based WEPP erosion 
model (USDA, 1995). WEPP produces sediment yields from each sub-source (or sub-
watershed). The summation of regression weights in a Bayesian multiple linear 
regression models should theoretically sum up to one. However, due to statistical 
independence of each WEPP run, the summation of weights may fall short of being 
one or could even be greater than one (Karim, 2014). This leads to uncertainty in soil 
fraction prediction that can only be tackled by coupling erosion prediction model with 
optimization routine which was beyond the scope of this work. Bayesian MCMC with 
Gibbs sampling (Bolstad, 2010) was applied to determine the probabilistic solution to 
the statistical un-mixing model for all parameters. The posterior distribution of all 
model parameters based on data is given by Bayes theorem (note the proportionality 
sign): 

 
P (All model Parameters | xjk, z) α P (All model parameters)  

                                                                        x P (xjk, z | All model parameters)  
 
The solutions to this model are the percentages of soils contributed by different sub-
watersheds or sources. 
 
COMPARISON OF UNCERTAINTYFROM THE TWO MODELS 

Land soil sampling on the urbanized Buffalo Bayou Watershed in Houston, Texas 
was designed to follow the drainage network managed by Harris County Flood 
Control District. Soil sampling was conducted in the vicinity of existing open or 
underground channels and roadside gutters. Where no such channel was found, soil 
samples were collected by the drainage gutters. Noteworthy, this leads to a sparse 
distribution of δ13C and C/N ratio on the whole watershed but fairs well when viewed 
over sub-watershed scale, as validated using geostatistical analyses in ArcGIS 
(Karim, 2014). 
    The strategy was necessary to determine the percent soil erosion contribution from 
the sub-watersheds per Bayesian statistical “un-mixing” model algorithm of Fox and 
Papanicolaou (2008). In a nutshell, the project teams’ interest has been to collect 
many samples in the whole watershed but not so many within a sub-watershed. Thus, 
the watershed-scale analysis led to ensemble soil loss predictions using 22 years of 
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rainfall data based regression weights estimated from USDA Water Erosion 
Prediction Project (WEPP) model runs (Karim, 2014). No soil samples could be 
found in the neighborhoods with Storm Water Pollution Prevention Plans (SWPPP) in 
place. Figure 4 is a partial view of the watershed with land and Bayou sampling 
locations. 
 

 

Figure 4. Partial Buffalo Bayou Watershed View with Land  
and Bayou Sampling Locations 

  
Table 1. Standard Deviation of Soil Yield Fractions from Bayesian Simulation 

 
 

The output from the Bayesian model shows (Table 1) an increase in the standard 
deviation with increasing length of rainfall series. This ‘trend’ is expected and is a 
good sign because long-range rainfall series typically does not preserve the original 
statistics or in other words, loses all statistical memory of the initial conditions. The 
traditional Monte Carlo Simulation underestimates the uncertainty (Table 2) and the 
uncertainty decreases with number of iterations which is user-defined. There is no 
mathematical or statistical basis to know at which iteration the solution is acceptable. 

Table 2. Standard Deviation of Soil Yield Fractions 
from Monte Carlo Simulation 
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One other observation is in our ability to tell how much of a land area covered in 
the model results in what magnitude of model uncertainty. This is important because 
neither of the two methods have a memory to predict the contribution of upstream 
land area to soil yield. The use of variable lead time rainfall series sheds light on how 
the uncertainty (standard deviation) changes with larger spatial coverage. Table 1 
shows the results for four different suspended sediment sample locations (3 to 6) on 
the Bayou. These location numbers increase in the downstream direction from west to 
east (Figure 4) with increasing land contribution areas. As is seen in Table 1 for 
Location 3 for example, the uncertainty estimate becomes constant at 0.07478 when 
16- and 22-year long term rainfall time series were used. In this particular case, an 
11-year rainfall time series would suffice to estimate the uncertainty. Bayesian 
approach allows us to make such prediction. The numbers in the tables are the 
standard deviations of the fractions of soil yield. They are to be multiplied by 100 to 
obtain the percent soil yield from a sub-source.  
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