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a b s t r a c t

Intensive forest harvest techniques have the potential to alter soil carbon and nutrient stocks and
biogeochemical processes. We investigated how differing levels of organic matter removal (OMR) during
timber harvest influenced the long-term stability of nitrification and the microbes regulating this pro-
cess. Nitrification is limited by the activity of ammonia oxidizing bacteria (AOB) and archaea (AOA);
however, reports on the relative contribution of each of these groups to forest soil nitrification have
varied and have not been investigated in response to OMR. The influence of soil depth on the structure
and function of the ammonia-oxidizing community has also been underreported and was included in
this study. We quantified soil physicochemical properties including concentrations of ammonium (NH4

þ)
and nitrite (NO2

�) þ nitrate (NO3
�), and also coupled next generation sequencing and qPCR of the amoA

gene to a whole-soil assay that stimulates nitrification and allows for the discrimination of AOA-from
AOB-activity using 1-octyne, which inhibits bacterial ammonia monooxygenase activity. Soils were
collected (1 m depth) from replicated loblolly pine (Pinus taeda L.) stands subjected to three different
intensities of OMR (i.e., unharvested control, bole-only harvest, and whole-tree harvest þ forest floor
removal). Increasing intensity of OMR and increasing soil depth lead to significant reductions in con-
centrations of in situ NH4

þ and NO2
� þ NO3

�. Sequencing and subsequent annotation of the ammonia
oxidizing community revealed that AOA were dominated by Crenarchaeota and AOB were dominated by
Nitrosospira spp. The abundance of both bacterial and archaeal amoA were influenced by OMR and soil
depth; furthermore, archaeal amoAwas more abundant than bacterial amoA across all soil depths and the
ratio of AOA to AOB increased with depth. Community structure of AOA and AOB were influenced by soil
depth; however, only AOB were altered by OMR. Soil incubations revealed nitrification was N-limited in
these forest soils. Furthermore, AOA- and AOB-contributions to total nitrification were nearly equivalent
in surface soils; however, AOA contribution increased to 75% at 1 m. In general, the highest rates of
nitrification occurred in the soils taken from unharvested control stands; however, OMR treatment
differences were only significant when soils were amended with high levels of ammonia indicating that
at ambient levels, intensive OMR may not lead to long-term alterations in nitrification potential.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Coniferous forests of the southeastern USA comprise 9% of total
North American forestlands (Oswalt et al., 2014) provide habitat for
wildlife (Neu et al., 2014), contribute to carbon sequestration
(Noormets et al., 2015), and provide economic output in the form of
timber-related products (McNulty et al., 1996; Hodges et al., 2011;
ki).
Brandeis et al., 2012). Recently there has been growing interest in
utilizing intensive organic matter removal (OMR) techniques dur-
ing timber harvest to increase economic output. Intensive tech-
niques such as whole-tree harvest þ forest floor removal result in
the removal of all aboveground organic matter as well as forest
byproducts such as downed woody debris, slash, sawdust, and
forest litter. These byproducts have been utilized as substitute
feedstocks in industrial processes, for bio-energy production, and
sold as merchantable mulch (Janowiak andWebster, 2010; Dickens
et al., 2012). Before being broadly adopted, the long-term
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biogeochemical consequences of these intensive OMR techniques
should be investigated in order to determine if they are sustainable.

Nitrogen (N) is often the most limiting nutrient in terrestrial
ecosystems (Binkley and Vitousek, 1989; Vitousek and Howarth,
1991; LeBauer and Treseder, 2008; Mitchell, 2011) and its avail-
ability is influenced by biogeochemical processes including plant-
uptake, microbial-immobilization, ammonification, nitrification,
and denitrification (Schlesinger and Bernhardt, 2013). Intensive
OMR associated with timber harvest has been shown to impart
decade-scale reductions in soil carbon (C) and nutrient stocks
(Johnson and Curtis, 2001; Hazlett et al., 2014; Vario et al., 2014;
Foote et al., 2015; Dean et al., 2017) and alter nutrient trans-
formation rates (Yanai, 1998; Burns and Murdoch, 2005;
Kreutzweiser et al., 2008; Wilhelm et al., 2013). It has been
shown that shortly after harvest (i.e., 1 yr) soil nitrate (NO3

�) can
increase up to 8x pre-harvest conditions (Burns and Murdoch,
2005); however, the long-term effect of OMR on soil inorganic-N
pool sizes and the processes that regulate these pool sizes has
not been investigated, especially at soil depths that exceed
10e15 cm. Given that pine forest soils have large pools of root
biomass and microbial biomass throughout the upper 1 m of the
soil, there is a high potential for N-cycle activity deep in the profile
(Mushinski et al., 2017). Considering that intensive OMR can result
in significant long-term reductions in soil total nitrogen (TN)
(Kellman et al., 2014; Achat et al., 2015a, 2015b), it is conceivable
that inorganic-N stocks and process rates will follow suit.
Furthermore, OMR-induced loss of inorganic-Nmay be exacerbated
in the southeastern US where soils are often sandy, highly weath-
ered, acidic, and possess a low cation exchange capacity.

Nitrification has been extensively studied because of the influ-
ence of inorganic-N pool size on plant productivity, soil fertility,
water quality, and the release of greenhouse gases into the atmo-
sphere. Ammonia (NH3) oxidation to nitrite (NO2

�), the initial step
in nitrification is carried out by both chemolithoautotrophic
ammonia-oxidizing archaea (AOA) and bacteria (AOB) (De Boer and
Kowalchuk, 2001) and is considered rate limiting. Growing evi-
dence suggests that AOA frequently outnumber AOB in a multitude
of ecosystems (Leininger et al., 2006; Prosser and Nicol, 2008;
Hatzenpichler, 2012; Norman and Barrett, 2014) indicating that
AOA may contribute more to nitrification than AOB (Chen et al.,
2008; Leininger et al., 2006; Prosser and Nicol, 2008); however,
diverging reports have led to questions regarding the mechanisms
controlling ammonia oxidizer niche differentiation (Yarwood et al.,
2010; Hu et al., 2014). Many have suggested that nitrogen avail-
ability and pH are the major determinants of the abundance and
functionality of AOA versus AOB (Offre et al., 2009; Stopni�sek et al.,
2010). Forest disturbances have been shown to affect the commu-
nity composition of AOA and AOB through modifications of the
aforementioned soil properties. Disturbances such as fire (Webster
et al., 2005; Yeager et al., 2005; Ball et al., 2010; Tourna et al., 2010),
tree girdling (Rasche et al., 2011), and forest clear-cutting (Hynes
and Germida, 2012) have been investigated; however, the
decade-scale influence of differing intensities of forest harvest on
AOA and AOB community structure and function has not been
investigated nor has the vertical distribution of ammonia oxidizers.

Although molecular methods have made it easier to determine
the relative abundance and community structure of AOA and AOB,
coupling functionality to community metrics has been difficult and
often relies on gene expression methods. Recently, Taylor et al.
(2013) described an assay for discriminating between AOA and
AOB activities, which is based upon AOB ammonia oxidization be-
ing irreversibly inactivated by 1-octyne. This method has subse-
quently been applied to agricultural (Giguere et al., 2015) and forest
systems (Lu et al., 2015). We utilized this method to link AOA and
AOB community metrics to ammonia oxidation functionality in soil.
In this study, we attempt to determine the decade scale influ-
ence of OMR on inorganic-N stocks as well as the composition and
potential activity of the ammonia oxidizing archaeal and bacterial
communities in the upper 1 m of the soil profile in a southeastern
US loblolly pine forest. We hypothesized that (i) increasing OMR
intensity would impose significant reductions in inorganic-N
resulting in altered community structure and abundance of AOA
and AOB, (ii) AOAwould constitute a significantly larger proportion
of the ammonia oxidizing community as proxied by amoA gene
copy number, (iii) AOA abundance would not be altered with soil
depth while AOB amoA gene copy number would be reduced, (iv)
AOA and AOB community composition would be altered by depth,
and (v) rates of nitrification would be reduced by increasing in-
tensity of OMR with AOA contributing a higher proportion to total
nitrification potential than AOB.

2. Materials & methods

2.1. Study site description and experimental design

Field sampling was conducted in April 2015 at the Long-Term
Soil Productivity (LTSP) site (Powers, 2006; Ponder et al., 2012) in
Davy Crockett National Forest near Groveton, TX, USA (31�060

32.4800N, 95�090 59.1500W). The climate is subtropical with a mean
annual temperature of 18.7 �C and mean annual precipitation of
1107 mm (1950e2010). Topography is relatively flat with slopes of
1e3% and elevation ranging from 101 to 110m. Soil across the study
area is a fine-loamy, siliceous, thermic Oxyaquic Glossudalf in the
Kurth series which developed in loamy coastal plain sediments of
the Yegua and Whitset geological formations (USDA/NRCS, 2003).
The experimental design includes Pinus taeda-dominant unhar-
vested control stands (tree age ¼ 60e80 yrs), and two harvest
treatments differing in the extent of organic matter removal. The
harvest treatments consisted of low-intensity treatment, bole-only
(BO) harvest, where only the bole of the tree was removed, and a
high-intensity treatment, whole-tree harvestþ forest floor removal
(WT þ FF), where the entire tree (bole, branches, leaves) was
removed and the forest floor litter was removed by hand-raking.
During harvest, trees were hand-felled and lifted off the plots
with a loader to reduce soil compaction. Control and both harvest
treatments were replicated 3X and each replicate was 0.2 ha. All
plots are located within a 1.5 km radius. Treatment plots were
harvested in 1996 and then replanted in 1997 with containerized
P. taeda L. (loblolly pine) seedlings at 2.5 m � 2.5 m spacing.

2.2. Soil sampling

Soil cores were extracted with a JMC Environmentalist's Sub-
Soil Probe PLUS (Clements Associates, Newton, IA, USA) (2.8 cm
diameter x 120 cm depth). Cores were taken in both control and
treatment plots at 1.8 m from the base of a randomly selected
P. taeda individual with a diameter at breast height (DBH) between
18 and 24 cm. A 7.5m buffer from the outside of the 0.2 ha plots was
not sampled to avoid edge effects. In some of the WT þ FF stands,
the forest floor had not yet redeveloped; because of this, the
organic soil horizon in all other plots (approximate thickness: <
3 cm) was removed prior to coring in order to investigate mineral
soil horizons exclusively. Soil sampling followed a stratified
random sampling design in which four cores were taken from each
plot and homogeneously pooled by depth (i.e., 0e10, 10e30,
30e60, 60e100 cm) to increase sample mass and reduce error
introduced by environmental heterogeneity. This resulted in 1
composited core per plot, separated into 4 depth increments, and
replicated 3X per treatment. On the day in which soil cores were
taken from the ground, samples were transported at 4 �C from the
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field to the lab, aseptically homogenized by hand, and 6 g sub-
samples (3 sample�1) were immediately stored at�80 �C for future
DNA extraction. The remaining soil was stored at 4 �C for subse-
quent biogeochemical analysis.
2.3. Soil physicochemical analyses

Soil pH was analyzed using an Accumet Basic pH meter (Denver
Instrument, Arvada, CO, USA) on a 1:2 solution of soil in a 0.01 M
CaCl2 solution (Minasny et al., 2011). Bulk soil was passed through a
2-mm sieve to remove large organic material and roots. A 25-g
aliquot of sieved soil was dried at 60 �C for 48 h and subse-
quently pulverized. The pulverized soil was used to determine soil
organic carbon (SOC) and total nitrogen (TN) concentration via
combustion elemental analysis on a Carlo Erba EA-1108 elemental
analyzer (CE Elantech, Lakewood, NJ, USA).

Soil inorganic-N was extracted from 15 g of sieved, field moist,
soil with 50ml of 2 M KCl within 36-hrs of soil being taken from the
ground. The soil þ KCl solutionwas shaken for 1 h and then filtered
over pre-leached (2 M KCl) #40Whatman filter paper and analyzed
immediately for concentrations of NH4

þ and NO2
� þ NO3

� on a Seal
Analytical AQ2þDiscrete Chemistry Analyzer (SEAL Analytical, Ltd.,
Southhampton, UK). Colorimetric-based chemistry for the deter-
mination of NH4

þ was based on indophenol-blue chemistry, and
determination of NO2

� þ NO3
� was based on cadmium-reduction

and subsequent diazotization. To assess the availability of NH3 for
ammonia oxidizer consumption, pH-adjusted NH3 levels were
calculated as described by Norman and Barrett (2016).
2.4. Whole soil nitrification assay

A soil assay (Taylor et al., 2013) was used to measure total
nitrification as well as the potential contributions of AOA and AOB
to nitrification. Soil samples were incubated at three different NH4

þ

levels (equivalent to 3.5, 25, and 100mg NH4
þ kg�1 soil) achieved by

adding sufficient anhydrous NH3 gas to the headspace of a 125-ml
Wheaton bottle fitted with a butyl stopper. NH4

þ levels were veri-
fied by colorimetric analysis. The lowest level of NH4

þ addition
(3.5 mg NH4

þ kg�1) was selected because it represented the highest
environmental level of NH4

þ and was thereby the lowest possible
normalized level for all samples. The moderate and high levels of
NH4

þ (i.e., 25 and 100 mg NH4
þ kg�1) were selected because they

represented the initial stimulation of nitrification (i.e., 25 mg NH4
þ

kg�1) and the maximum rate of nitrification (i.e., 100 mg NH4
þ kg�1)

as evidenced by a preliminary experiment (Supplementary
Figure 1). Prior to initiation of the experiment, soils were pre-
incubated at 25 �C for 48-hrs to stimulate microbial activity.
Three treatments were imposed to each sample at each NH4

þ level:
(i) acetylene amendment (6 mmol L�1) to inhibit all autotrophic
nitrification, (ii) 1-octyne amendment (4 mmol L�1) to inhibit AOB
nitrification, and (iii) positive control (no octyne or acetylene
amendment) to determine autotrophic þ heterotrophic nitrifica-
tion. Following amendment, soil samples were incubated at 25 �C
for 96 h. Subsequent NO2

� þ NO3
� concentrations were determined

using a Seal Analytical AQ2þ Discrete Chemistry Analyzer (SEAL
Analytical, Ltd., Southhampton, UK) as previously noted. Total
chemoautotrophic nitrification rates were calculated after sub-
tracting NO2

� þ NO3
� accumulation in the acetylene treatment and

pre-incubation levels of NO2
� þ NO3

�. Nitrification in the presence of
1-octyne (octyne-resistant) was attributed to AOA activity, with
AOB activity (octyne-sensitive) calculated as the difference be-
tween total potential autotrophic nitrification and AOA potential
nitrification.
2.5. DNA extraction, PCR amplification, DNA library construction,
and sequencing

DNA extraction followed the modified version of the Interna-
tional Standard for the extraction of DNA from soil as described by
Terrat et al. (2014). Further modification was made to extract DNA
from 3 g of soil (dry weight equivalent) rather than the prescribed
1 g. DNA was extracted from 3 analytical replicates per sample and
then pooled to increase mass and reduce environmental hetero-
geneity. DNA library preparation and sequencing of ammonia
oxidizer communities was done by Molecular Research DNA Lab-
oratory (www.mrdna.com, Shallowater, TX, USA) through target-
based unidirectional amplification of the amoA gene with primers
Arch amoA-1F (50-STA ATG GTC TGG CTT AGA CG-3’; Francis et al.,
2005) and Arch amoA-2R (50- GCG GCC ATC CAT CTG TAT GT -3’;
Francis et al., 2005) for AOA as well as amoA-1F (50- GGG GTT TCT
ACT GGT GGT -3’; Rotthauwe et al., 1997) and amoA-2R (50- CCC CTC
KGS AAA GCC TTC TTC -3’; Rotthauwe et al., 1997) for AOB. PCR
amplification was accomplished by utilizing the HotStarTaq Plus
Master Mix Kit (Qiagen, Valencia, CA, USA) under the following
conditions: an initial denaturation step at 94 �C for 3 min, followed
by 28 cycles of 94 �C for 30 s, 53 �C for 40 s and 72 �C for 1min, after
which a final elongation step at 72 �C for 5 minwas performed. PCR
products were verified via gel electrophoresis (2% agarose gel).
Samples were barcoded and subsequently pooled together in equal
proportions based on their molecular weight and DNA concentra-
tions. Pooled samples were purified with calibrated AMPure XP
beads (Agencourt Biosciences Co., Brea, CA, USA). The pooled and
purified PCR products were then used to prepare an Illumina DNA
library for each sample. Synthesis-based sequencing on an Illumina
MiSeq followed the manufacturer's guidelines and resulted in
single-end reads of 250.4 ± 25.9 (mean ± std. dev.) bp for AOA and
399.1 ± 135 bp for AOB.

2.6. Bioinformatic analysis

Resulting.fasta and. qual files were demultiplexed, quality
filtered, and analyzed using the QIIME 1.9.1 pipeline (Caporaso
et al., 2010). Illumina sequences with <200 and >1000 bp, bar-
code or primer sequence errors, and those with homopolymers or
ambiguous base calls that exceed six nucleotides were discarded.
Raw sequences were deposited in NCBI's sequence read achieves
under the accession number SRR5218290. Operational taxonomic
units (OTUs) were defined by clustering at 97% sequence identity
using the QIIME implementation of UCLUST (Edgar, 2010). Final
OTUs were taxonomically classified using BLASTn against a curated
database derived from RDPII and NCBI (www.ncbi.nlm.nih.gov,
http://rdp.cme.msu.edu).

2.7. Quantification of amoA gene copy number

Quantitative-PCR (qPCR) targeting ammonia oxidizing bacteria
and archaea were performed using primers amoA 1F/amoA 2R for
bacteria (Rotthauwe et al., 1997) and Arch amoA 1F/Arch amoA 2R
for archaea (Francis et al., 2005). The 25 mL reaction mixture con-
tained 13 mL SYBR green real master mix (5Prime, Gaithersburg,
MD), 0.5 mL of each primer (concentration 10 mM), 1 mL DNA tem-
plate, and 10 mLmolecular gradewater. Each analysis run included a
set of standards, negative controls, and replicated samples (n ¼ 3)
on a 96-well plate. For bacterial and archaeal amoA, the qPCR was
run with the following conditions: 95 �C for 5 min; 94 �C for 45 s,
56 �C for 45 s, and 72 �C for 1.5min (30 cycles). All qPCR assays were
performed using an Eppendorf Mastercycler® ep realplex thermal
cycler (Eppendorf, Hamburg, Germany). qPCR products were
length-verified via gel electrophoresis (2% agarose gel).
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Amplification efficiencies of 89.7e99% were obtained for AOA and
AOB, with r2 values > 0.97.

AOB amoA standards were acquired from the lab of Raina Maier
(Nelson et al., 2015). The archaeal amoA gene standard was pre-
pared by amplifying soil DNA extracts using primers Arch amoA 1F/
Arch amoA 2R (Francis et al., 2005). The PCR reaction followed the
same conditions as listed above and produced 635 bp amplicons
that were cloned using the TOPO® TA Cloning Kit (Life Technolo-
gies) with pCR™2.1-TOPO® vector and transformed into chemically
competent Escherichia coli DH5a. The sequence of amoA clones was
verified via sequencing with an ABI 2700 PCR sequencing system
(IPGB, Texas A&M University). Copy numbers are reported as amoA
gene copies g�1 dry-weight soil.

2.8. Statistical analysis

All statistical analyses on AOA and AOB communities were car-
ried out using the sequence count within each OTU as an abun-
dance value (Danzeisen et al., 2011). All datasets were tested for
normality using Shapiro-Wilk's test. When data was not of normal
distribution, non-parametric statistical tests or log10 trans-
formations were applied. OTU data generated in QIIME were used
to quantify the number of observed OTUs, richness, and diversity.
Community metric calculations were analyzed using normalized
sequence data set to 5352 reads for AOA and AOB. Unless otherwise
noted, physicochemical properties, AO community metric esti-
mates, and OTU abundance values were statistically analyzed using
a linear mixed model ANOVA. Because of the inherent autocorre-
lation between differing soil depths, a split plot repeated measures
statistical design was employed with OMR as the fixed main plot
and soil depth designated as the fixed split plot (Derner et al.,
2006). Soil depth was also designated as a repeated measure.
Replicated plots were nested within harvest treatment and
considered a random effect (Dai et al., 2006). When differences
were significant, Tukey's honest significant difference (HSD) test
was performed to assess post hoc contrasts with significance
inferred at p < 0.05. Non-metric multidimensional scaling (NMDS)
based on a Bray-Curtis dissimilarity matrix (Bray and Curtis, 1957)
was performed on normalized OTU data. A permutational multi-
variate analysis of variance (PERMANOVA) (Anderson, 2001) using
the Bray-Curtis matrix listed above was employed to characterize
differences in AOA and AOB community structure based on OMR
treatment and soil depth. PERMANOVAs were run using 999 per-
mutations. Correlation analyses was performed using JMP (SAS
Institute, Inc., Cary, NC, USA).

3. Results

3.1. Soil properties

Control stands possessed the highest mean SOC (10.1 ± 3.3 g C
kg�1) and TN (0.5 ± 0.1 g N kg�1) concentration and the most acidic
overall soil pH (3.5 ± 0.1) while the WT þ FF stands possessed the
lowest SOC (4.8 ± 1.5 g C kg�1) and TN (0.3 ± 0.2 g N kg�1) con-
centration and the least acidic soil pH (4.3 ± 0.1) (Table 1). BO
stands fell between control and WT þ FF stands in regards to SOC
(6.4 ± 1.8 g C kg�1), TN (0.4 ± 0.1 g N kg�1), and soil pH (3.6 ± 0.1).
Regardless of treatment, SOC and TN decreased with depth; how-
ever, soil pH was not different with depth. Extractable NH4

þ and
NO2

� þ NO3
� were lowest in WT þ FF stands (NH4

þ:
1.0 ± 0.2 mg kg�1; NO2

� þ NO3
�: 0.3 ± <0.1 mg kg�1) and highest in

control stands (NH4
þ: 2.4 ± 0.2 mg kg�1; NO2

� þ NO3
�:

0.5 ± 0.1 mg kg�1). Inorganic-N concentrations in BO stands were
generally identical to the control stands (Table 1). Calculated NH3
was statistically unaffected by harvest treatment, but decreased
with increasing soil depth (0e10 cm: 13.9 ± 4.3 ng NH3 kg�1;
10e30 cm: 10.0 ± 2.2 ng NH3 kg�1; 30e60 cm: 10.3 ± 6.8 ng NH3
kg�1; 60e100 cm: 4.7 ± 1.3 ng NH3 kg�1). On average, NH4

þ con-
centrations were 4.5x higher than NO2

� þ NO3
� concentrations

across all treatments and depths. NH4
þ accounted for 0.45% of TN

while NO2
� þ NO3

� accounted for 0.10% of TN on a g kg�1 basis.
Extractable NH4

þ (p < 0.001) and NO2
� þ NO3

� (p < 0.05) decreased
significantly with depth; however, NO2

� þ NO3
� was less affected by

depth than NH4
þ. Soil pH was negatively correlated to concentra-

tions of NH4
þ and NO2

� þ NO3
� while SOC, TN, NH4

þ, and NO2
� þ NO3

�

were all significantly positively correlated with each other
(Table 2).

3.2. AOA and AOB community composition

Sequencing revealed that richness (p < 0.001) and diversity
(p < 0.001) metrics were statistically higher for AOA (Chao1 Rich-
ness: 2186 ± 120; Simpson's Diversity: 0.92 ± < 0.1) than AOB
(Chao1 Richness: 365 ± 24; Simpson's Diversity: 0.79 ± < 0.1)
regardless of harvest treatment or soil depth. Counts of OTUs in
AOA libraries were statistically lower in control treatment stands
(435 ± 30 OTUs) than BO (537 ± 20 OTUs) and WT þ FF treatment
stands (528 ± 31), but did not vary with soil depth (Table 3). AOA
and AOB OTU richness (Chao1) were statistically unaffected by
treatment and depth; however, AOB OTU richness showed a gen-
eral increase with increasing OMR and a reduction with depth.
Furthermore, AOB richness was positively correlated to NH3

(R ¼ 0.47; p < 0.01). Simpson's diversity for AOA and AOB generally
increased with increasing OMR and AOA diversity was negatively
correlated to increasing concentrations of SOC (R ¼ �0.45;
p < 0.01), TN (R ¼ �0.48; p < 0.01), and NO2

� þ NO3
� (R ¼ �0.38;

p < 0.05) (Table 2). AOB diversity was unaffected by depth; how-
ever, AOA diversity was significantly higher at depth (0e10 cm:
0.89 ± 0.02; 10e30 cm: 0.93 ± 0.01; 30e60 cm: 0.94 ± 0.01;
60e100 cm: 0.92 ± 0.01).

Phylum-level annotation of OTUs revealed that the ammonia
oxidizing community was dominated by Crenarchaeota (>90% of all
AOA sequences) and Thaumarchaeota (>9% of all AOA sequences)
for AOA and Proteobacteria (>83% of all AOB sequences) for AOB
(Supplementary Figure 2). The majority of AOA sequences were
annotated to Crenarchaeota spp. (representing > 64% of all AOA
sequences) and AOB sequences were in the Nitrosospira lineages
(representing >31% of all AOB sequences). Harvest intensity did not
alter the relative abundance of AOA phyla; however, increasing
depth did lead to significant decreases in OTUs annotated to the
phylum Crenarchaeota (p < 0.01) and significant increases in
Thaumarchaeota (p < 0.01). Likewise, the relative abundance of
AOB OTUs annotated at the phylum-level illustrated no response to
harvest treatment; however, OTUs annotated as Proteobacteria did
significantly decrease with increasing depth (p < 0.05).

Non-metric multidimensional scaling (NMDS) plots, based on
Bray-Curtis distance matrices, of OTUs resulted in no statistical
separation for AOA based on harvest treatments; however, AOB
community composition was significantly affected by treatment
(p < 0.05) (Fig. 1). AOA (p < 0.01) and AOB (p < 0.001) community
composition was statistically altered by soil depth with unique
clustering when soil depth was analyzed independent of OMR
treatments; specifically, for AOA the 60e100 cm depth was statis-
tically separated from the other 3 depths (p < 0.01), while for AOB
the 0e10 cm and 10e30 cm increments were statistically different
than the 30e60 and 60e100 cm increments (p < 0.05).

3.3. AOA and AOB amoA gene abundance

AOA amoA copy numbers (5.7 ± <0.01 log10 amoA copies) were



Table 1
Edaphic parameters of the three organic matter removal treatments for each of the four soil depth increments Post hoc contrasts (Tukey-Kramer) were computed on values for
each depth nested within each treatment and indicated by differing letters within each column. For each soil depth in each treatment, n ¼ 3. Statistical differences were
inferred at p < 0.05. SOC: soil organic carbon, TN: soil total nitrogen.

Soil Depth (cm) SOC (g kg�1 soil) TN Soil pH NH4
þ NO2

� þ NO3
� Calculated NH3 (ng N kg�1 soil)

(mg N kg�1 soil)

Unharvested Control
0e10 27.6 (5.1)a 1.1 (0.2)a 3.3 (0.2)a 3.4 (0.2)a 0.7 (0.1)a 4.7 (2.1)a
10e30 7.2 (1.3)bc 0.5 (0.2)bcd 3.6 (0.1)ab 2.7 (0.4)ab 0.5 (<0.1)abc 6.4 (0.5)a
30e60 3.3 (0.6)cd 0.3 (0.1)de 3.5 (0.2)ab 1.8 (0.3)bcd 0.4 (<0.1)bcde 4.3 (2.0)a
60e100 2.4 (0.1)d 0.3 (0.1)cde 3.4 (0.3)a 1.9 (0.3)bcd 0.3 (0.1)cde 3.5 (1.9)a
Bole-only Harvest
0e10 16.5 (2.1)a 0.8 (0.1)ab 4.2 (0.1)ab 3.1 (0.4)a 0.6 (0.1)ab 26.9 (7.9)a
10e30 4.1 (0.3)cd 0.3 (<0.1)cde 3.7 (0.3)ab 2.8 (0.5)ab 0.5 (0.1)bcd 9.7 (3.8)a
30e60 2.6 (0.7)d 0.3 (0.1)cde 3.4 (0.2)a 2.4 (0.4)abc 0.4 (0.1)bcd 3.5 (1.2)a
60e100 2.4 (0.3)d 0.3 (<0.1)cde 3.3 (0.2)a 1.4 (0.4)cde 0.5 (0.1)bcd 1.6 (0.9)a
WT Harvest þ FF Removal
0e10 12.9 (1.3)ab 0.6 (<0.1)abc 4.0 (0.3)ab 1.5 (0.3)cd 0.4 (0.1)bcde 10.3 (5.0)a
10e30 4.0 (0.8)cd 0.2 (<0.1)de 4.4 (0.1)ab 1.1 (0.4)de 0.3 (0.1)cde 14.0 (5.2)a
30e60 1.2 (0.4)e 0.2 (<0.1)e 4.3 (0.4)ab 0.8 (0.2)de 0.2 (0.1)de 23.2 (20.4)a
60e100 1.3 (0.7)e 0.2 (0.1)e 4.7 (0.1)b 0.4 (0.1)e 0.2 (0.1)e 8.9 (1.3)a

Table 2
Spearman's ranked correlation analysis between soil physicochemical and biological properties. Bold values indicate significance with level of significance inferred by su-
perscript symbol. AOA: ammonia oxidizing archaea, AOB: ammonia oxidizing bacteria. *p < 0.05, yp < 0.01, zp < 0.001.

SOC TN Soil pH Calculated Environmental Environmental amoA copy No. Unique OTUs Chao 1 Simpson's
Index

NH3 NH4
þ NO2

� þ NO3
� AOA AOB AOA AOB AOA AOB AOA AOB

SOC
TN 0.82‡
Soil pH �0.12 �0.30

Calculated NH3 0.20 �0.04 0.84‡
Environmental NH4

þ 0.57‡ 0.52‡ ¡0.47y 0.02
Environmental NO2

� þ NO3
� 0.62‡ 0.55‡ ¡0.53‡ �0.21 0.68‡

amoA Copy No. AOA 0.30 0.27 ¡0.56‡ �0.31 0.59‡ 0.55‡
AOB 0.66‡ 0.45y �0.13 0.16 0.53‡ 0.55‡ 0.19

No. Unique OTUs AOA �0.18 �0.17 0.03 0.12 �0.14 �0.10 �0.11 �0.08
AOB 0.20 0.06 0.38* 0.41* �0.02 0.13 �0.31 0.32 �0.01

Chao 1 AOA 0.02 0.09 �0.08 0.24 0.06 0.16 �0.07 0.21 0.52‡ �0.13
AOB 0.28 0.18 0.39* 0.47y 0.01 0.13 �0.29 0.31 �0.01 0.96‡ �0.08

Simpson's Index AOA ¡0.45y ¡0.48y 0.27 0.17 �0.27 ¡0.38* �0.32 0.08 �0.05 0.77‡ �0.23 0.74‡
AOB 0.09 �0.02 0.27 0.23 �0.12 0.01 �0.32 ¡0.38* �0.03 �0.08 0.05 �0.14 �0.05

Table 3
Summary of operational taxonomic units (OTUs), and their diversity and richness estimates. Datasets were normalized by setting each sample to 5352 sequences per sample.
OTUs were defined as sequences sharing �97% similarity and served as the basis for number of unique OTUs, Chao1 richness estimate, and Simpson's Diversity Index. For each
soil depth in each treatment, n ¼ 3; for mean values per treatment, n ¼ 12. AOA: ammonia oxidizing archaea, AOB: ammonia oxidizing bacteria. Mean values are bolded.

Soil Depth (cm) No. Unique OTUs Chao1 Richness Estimate Simpson's Diversity Index

AOA AOB AOA AOB AOA AOB

Unharvested Control
0e10 470 (27) 248 (52) 1718 (415) 424 (29) 0.84 (0.03) 0.69 (0.2)
10e30 494 (15) 219 (79) 2644 (398) 343 (110) 0.91 (0.02) 0.87 (0.03)
30e60 452 (55) 162 (41) 2429 (250) 282 (70) 0.92 (0.03) 0.74 (0.1)
60e100 326 (86) 120 (9) 2079 (102) 224 (12) 0.89 (0.03) 0.66 (0.1)
Mean 435 (30) 188 (27) 2218 (172) 318 (36) 0.89 (0.02) 0.74 (0.1)
Bole-only Harvest
0e10 456 (39) 262 (44) 2470 (176) 473 (81) 0.92 (0.01) 0.74 (0.1)
10e30 574 (46) 166 (24) 1185 (713) 300 (59) 0.93 (0.01) 0.76 (0.04)
30e60 574 (4) 239 (25) 2739 (668) 404 (70) 0.95 (0.01) 0.85 (0.04)
60e100 546 (29) 127 (33) 2420 (350) 251 (75) 0.94 (0.01) 0.64 (0.2)
Mean 537 (20) 199 (22) 2203 (268) 357 (40) 0.94 (0.01) 0.75 (0.1)
WT Harvest þ FF Removal
0e10 480 (72) 321 (14) 2165 (289) 549 (40) 0.88 (0.03) 0.95 (<0.01)
10e30 619 (79) 308 (83) 2646 (274) 497 (116) 0.94 (0.02) 0.84 (0.1)
30e60 546 (47) 201 (57) 1799 (314) 335 (88) 0.95 (0.01) 0.84 (0.1)
60e100 465 (21) 174 (21) 1941 (574) 295 (26) 0.93 (0.02) 0.85 (0.02)
Mean 528 (31) 251 (29) 2138 (190) 419 (46) 0.92 (0.01) 0.87 (0.03)
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Fig. 1. Nonmetric multidimensional scaling (NMDS) ordinations of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) communities based upon their OTU
composition derived from Bray-Curtis distances matrices. Each point and corresponding bars represent mean ± standard deviation (n ¼ 3). Statistical differences in organic matter
removal, soil depth, and their interaction were obtained using PERMANOVA. Control: unharvested control, BO: bole-only harvest, WT þ FF: whole-tree harvest þ forest floor
removal.
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significantly higher than AOB amoA (4.2 ± 0.01 log10 amoA copies)
regardless of harvest treatment or depth (Fig. 2). Increasing harvest
treatment significantly reduced AOA amoA (p < 0.01) and AOB
amoA (p < 0.05) copy numbers. Specifically, control treatment
stands possessed a statistically larger amount of AOA (5.8 ± <0.1
log10 amoA copies) and AOB (4.3 ± 0.2 log10 amoA copies) amoA
copies than BO (AOA: 5.7 ± <0.1 log10 amoA copies; AOB: 4.0 ± <0.1
log10 amoA copies) andWTþ FF (AOA: 5.6±<0.1 log10 amoA copies;
AOB: 3.9 ± <0.1 log10 amoA copies) stands. Soil depth drove sig-
nificant linear reductions in copies of AOB amoA but not AOA amoA.
The ratio of AOA:AOB amoA copy number ranged from 3.6 to 356
and did not vary by treatment; however, this ratio significantly
increased linearly with depth (p ¼ 0.001) (Fig. 2). Copy number of
AOA and AOB amoA were significantly positively correlated to
concentrations of NH4

þ (AOA: R ¼ 0.59, p < 0.001; AOB: R ¼ 0.53,
p < 0.001) and NO2

� þNO3
� (AOA: R¼ 0.55, p < 0.001; AOB: R¼ 0.55,
Fig. 2. Ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) amoA qua
ratios of AOA to AOB amoA gene copies in response to soils depth.
p < 0.001) (Table 2). Congruently, AOA amoA was negatively
correlated to soil pH (R ¼ �0.56, p < 0.001) and AOB amoA was
positively correlated to concentrations of SOC (R ¼ 0.66, p < 0.001)
and TN (R ¼ 0.45, p < 0.01).
3.4. Whole-soil nitrification assay

Incubation in the presence of acetylene led to no significant
accumulation of NO2

� þ NO3
� from soils at the Groveton-LTSP

indicating that heterotrophic nitrification is not a major process
in these soils. The small amount of NO2

� þ NO3
� that did accumulate

(<0.1 mg N kg�1 soil) was subsequently subtracted before calcu-
lating potential autotrophic nitrification rates. Following incuba-
tion, accumulation of NO2

� þ NO3
� was detected for every sample.

Regardless of harvest treatment or depth, total rates of NO2
� þ NO3

�

accumulationwere highest when soil was amended to 100mg NH4
þ

ntification based on organic matter removal (OMR) treatment and soil depth as well as
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kg�1 soil which was four-fold higher than the 25 mg NH4
þ kg�1

normalization level (p < 0.001) and seven-fold higher than the
3.5 mg NH4

þ kg�1 normalization level (p < 0.001) (Fig. 3). Total
nitrification potential in the presence of 3.5 mg NH4

þ kg�1 was
statistically unaffected by harvest treatment, but significantly
decreased linearly from 1.05 ± 0.07 mg NO2

� þ NO3
� kg�1 day�1 at

0e10 cm to 0.81 ± 0.06 mg NO2
� þ NO3

� kg�1 day�1 at 60e100 cm
(p < 0.001). Significant total nitrification rate differences for harvest
treatment and depth were observed for soils amended with 25 mg
NH4

þ kg�1 (harvest treatment: p < 0.001; depth: p < 0.001) and
100 mg NH4

þ kg�1 (harvest treatment: p < 0.001; depth: p < 0.001).
For both the 25 and 100 mg NH4

þ kg�1 normalization levels, the
control treatment (25 mg NH4

þ kg�1: 2.37 ± 0.05 mg NO2
� þ NO3

�

kg�1 day�1; 100 mg NH4
þ kg�1: 8.23 ± 0.08 mg NO2

� þ NO3
� kg�1

day�1) possessed the highest accumulation rate which was signif-
icantly higher than the BO treatment (25 mg NH4

þ kg�1:
Fig. 3. Potential total nitrification rates in response to organic matter removal (OMR)
and differing levels of NH4

þ addition within each soil depth. Data are means ± standard
error (n ¼ 3). A repeated measures ANOVA table shows the statistical significance of
OMR, soil depth, and their interaction for each NH4

þ normalization level (i.e., 3.5, 25,
100 mg NH4

þ kg�1 soil). Post hoc contrasts (Tukey-Kramer) were computed on values
for each treatment within a depth profile (0e100 cm) for each NH4

þ amendment level
and significance is indicated by different letters above bars. Post hoc contrasts were
also calculated for mean soil depth values and significance is indicated by different
Greek letters in each box. Control: unharvested control, BO: bole-only harvest,
WT þ FF: whole-tree harvest þ forest floor removal.
1.65 ± 0.05 mg NO2
� þ NO3

� kg�1 day�1; 100 mg NH4
þ kg�1:

6.90 ± 0.06 mg NO2
� þ NO3

� kg�1 day�1) and theWTþ FF treatment
(25 mg NH4

þ kg�1: 0.38 ± 0.04 mg NO2
� þ NO3

� kg�1 day�1; 100 mg
NH4

þ kg�1: 4.32± 0.06mgNO2
� þNO3

� kg�1 day�1). As was observed
for soils amended with 3.5 mg NH4

þ kg�1, total NO2
� þ NO3

� accu-
mulation decreased linearly for both the 25 and 100 mg NH4

þ kg�1

normalization levels.
Potential nitrification rates in the presence of 1-octyne (octyne-

resistant, AOA) statistically varied by treatment (3.5 mg NH4
þ kg�1:

p < 0.05; 25mg NH4
þ kg�1: p < 0.001; 100mg NH4

þ kg�1: p < 0.001);
however, only the 25 mg NH4

þ kg�1 (p < 0.01) and the 100 mg NH4
þ

kg-1 (p < 0.001) varied by depth (Fig. 4). Specifically, 1-octyne-
resistant (AOA) nitrification potential was highest in the control
treatment (3.5 mg NH4

þ kg�1: 0.66 ± 0.03 mg NO2
� þ NO3

� kg�1

day�1; 25 mg NH4
þ kg�1: 1.49 ± 0.06 mg NO2

� þ NO3
� kg�1 day�1;

100 mg NH4
þ kg�1: 5.42 ± 0.23 mg NO2

� þ NO3
� kg�1 day�1) which
Fig. 4. Potential octyne-resistant (ammonia-oxidizing archaea, AOA) and octyne-
sensitive (ammonia-oxidizing bacteria, AOB) nitrification rates in whole soil assays
amended with differing levels of NH4

þ. Data are means ± standard error (n ¼ 3). A
repeated measures ANOVA table shows the statistical significance of organic matter
removal (OMR), soil depth and their interaction for each NH4

þ normalization level (i.e.,
3.5, 25, 100 mg NH4

þ kg�1 soil). Control: unharvested control, BO: bole-only harvest,
WT þ FF: whole-tree harvest þ forest floor removal. AOA: ammonia oxidizing archaea,
AOB: ammonia oxidizing bacteria.
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was significantly higher than the BO treatment (3.5 mg NH4
þ kg�1:

0.66 ± 0.03 mg NO2
� þ NO3

� kg�1 day�1; 25 mg NH4
þ kg�1:

1.05 ± 0.05 mg NO2
� þ NO3

� kg�1 day�1; 100 mg NH4
þ kg�1:

4.03 ± 0.25 mg NO2
� þ NO3

� kg�1 day�1) and theWT þ FF treatment
(3.5 mg NH4

þ kg�1: 0.48 ± 0.02 mg NO2
� þ NO3

� kg�1 day�1; 25 mg
NH4

þ kg�1: 0.24 ± 0.02 mg NO2
� þ NO3

� kg�1 day�1; 100 mg NH4
þ

kg�1: 2.82 ± 0.15 mg NO2
� þ NO3

� kg�1 day�1); furthermore, the BO
treatment had significantly more NO2

� þ NO3
� accumulation than

the WT þ FF treatment (p < 0.001). In contrast, octyne-sensitive
(AOB) nitrification was statistically unaffected by harvest treat-
ment for the 3.5 mg NH4

þ kg�1 normalization level; however, the 25
(p < 0.01) and 100 (p < 0.001) mg NH4

þ kg�1 normalization levels
were both statistically affected, with the control (25 mg NH4

þ kg�1:
0.87 ± 0.09 mg NO2

� þ NO3
� kg�1 day�1; 100 mg NH4

þ kg�1:
2.80 ± 0.28 mg NO2

� þ NO3
� kg�1 day�1) and BO (25 mg NH4

þ kg�1:
0.60 ± 0.07 mg NO2

� þ NO3
� kg�1 day�1; 100 mg NH4

þ kg�1:
2.87 ± 0.30 mg NO2

� þ NO3
� kg�1 day�1) treatments reporting

higher rates of potential nitrification than the WT þ FF treatment
(25 mg NH4

þ kg�1: 0.15 ± 0.03 mg NO2
� þ NO3

� kg�1 day�1; 100 mg
NH4

þ kg�1: 1.50 ± 0.18mg NO2
� þNO3

� kg�1 day�1). Octyne-sensitive
(AOB) nitrification was significantly reduced with increasing soil
depth for all levels of NH4

þ normalization (3.5 mg NH4
þ kg�1:

p < 0.001; 25 mg NH4
þ kg�1: p < 0.001; 100 mg NH4

þ kg�1:
p < 0.001).

Unlike total nitrification, octyne-resistant (AOA) accumulation
of NO2

� þ NO3
� increased linearly with depth for the 25 mg NH4

þ

kg�1 (p < 0.01) and 100 mg NH4
þ kg�1 (p < 0.001) normalization

levels. Regardless of harvest treatment, the proportion of total
nitrification attributed to octyne-resistant (AOA) activity at
0e10 cm decreased with increasing concentrations of NH4

þ from
58% at 3.5 mg NH4

þ kg�1 to 49% at 100 mg NH4
þ kg�1. Increasing

depth resulted in an overall linear increase in the proportion of
nitrification attributed to AOA activity. Regardless of treatment or
NH4

þ normalization level, AOA contributed from 51% at 0e10 cm to
76% at 60e100 cm. Octyne-resistant and -sensitive nitrificationwas
significantly correlated to multiple biological and edaphic proper-
ties for each NH4

þ normalization level. Specifically, octyne-resistant
(AOA) nitrification was negatively correlated to soil pH and calcu-
lated NH3 levels and positively correlated to AOA amoA copy
numbers; congruently, octyne-sensitive (AOB) nitrification was
positively correlated to SOC, TN, and AOB amoA levels (Table 4).
4. Discussion

4.1. Soil carbon and nitrogen concentrations

In this study we illustrate how differing intensities of OMR
associated with timber harvest can influence concentrations of
Table 4
Spearman's ranked correlation analysis between octyne-resistant (ammonia-oxidizing arc
for each NH4

þ addition level (3.5, 25, 100 mg NH4
þ kg�1 soil) and select soil physicochemica

inferred by superscript symbol. *p < 0.01, yp < 0.01, zp < 0.001.

Nitrification Potential (mg NO2
� þ NO3

�

Octyne-Resistant (AOA)

3.5 25

SOC 0.15 0.11
TN 0.18 0.09
Soil pH ¡0.68‡ ¡0.67‡
Environmental (calculated) NH3 ¡0.47‡ ¡0.46y
Environmental NH4

þ 0.51‡ 0.48y
Environmental NO2

� þ NO3
� 0.77‡ 0.47y

AOA amoA Copy No. 0.58‡ 0.76‡
AOB amoA Copy No. 0.19 0.06
SOC, TN, and inorganic N as well as community structure, distri-
bution, abundance, and activity of AOA and AOB. We found that
intensive forest harvest led to decade-scale reductions in concen-
trations of SOC and TN which is consistent with what has been
observed previously in surface soils at this site (Foote et al., 2015)
and other sites (Johnson and Curtis, 2001; Li et al., 2003; Nave et al.,
2010; Jones et al., 2011; Huang et al., 2013; Achat et al., 2015a,
2015b). However, our results indicate that forest harvest-induced
losses can occur throughout the upper 1 m of the profile and
persist for decades. Furthermore, concentrations of soil NH4

þ and
NO2

� þ NO3
� were also significantly altered by increasing harvest

intensity; specifically, the WT þ FF treatment resulted in signifi-
cantly lower concentrations of soil inorganic-N than the control
and BO treatments. It is likely that lower concentrations of
inorganic-N in the more severe organic matter removal treatment
are at least in part attributable to higher rates of N-losses. For
example, changes in microclimate conditions following harvest
such as increases in solar radiation reaching the soil surface, de-
creases in transpiration and rainfall interception, and increases in
the amount of precipitation reaching and infiltrating the forest
floor and into the soil would favor higher rates of leaching
(Vitousek et al., 1997; Carlyle et al., 1998; Holmes and Zak, 1999;
Marchman et al., 2015) and denitrification (Brumme, 1995)
following treatment application. Sustained reductions in inorganic-
N may be attributable to reduced N-inputs (i.e., leaf litter, woody
debris, root exudates, etc.) in theWTþ FF treatment stands. To that
point, the observed reduction in NH4

þ and NO2
� þ NO3

� concentra-
tions were significantly correlated to the concurrent reduction of
TN. Increasing soil depth lead to significant reduction in both NH4

þ

and NO2
� þNO3

�. This is consistent with most studies of inorganic-N
in forest soils where ammonification typically decreases with depth
(Liu et al., 2015; Tanner et al., 2016) and NO2

� þ NO3
� concentrations

decrease because of the mobility of NO3
� in well drained soils.
4.2. amoA quantification

Both AOA and AOB amoA genes were detected in all treatments
and at all depths. Based on amoA quantification, AOA were 95X
more abundant than AOB throughout the soil profile which is
consistent with what has been previously reported in arid ecosys-
tems (Adair and Schwartz, 2008), agricultural plots (Nicol et al.,
2008; Hai et al., 2009) and forest soils (Lu et al., 2015). AOB amoA
gene abundance declined significantly with depth in all treatments
while AOA amoA gene abundance remained relatively constant,
resulting in a significantly larger AOA to AOB ratio at 60e100 cm. As
postulated by Leininger et al. (2006), the high numbers of AOA
(relative to AOB) at depth indicate that AOA are adapted to a broad
range of growth conditions and may possess a more versatile
haea, AOA) and esensitive (ammonia-oxidizing bacteria, AOB) nitrification potential
l and biological properties. Bold values indicate significance with level of significance

kg�1 day�1)

Octyne Sensitive (AOB)

100 3.5 25 100

�0.03 0.78‡ 0.65‡ 0.67‡
�0.01 0.58‡ 0.57‡ 0.61‡
¡0.58‡ �0.05 ¡0.51‡ ¡0.35*
¡0.47y 0.28 �0.10 0.09
0.31 0.59‡ 0.81‡ 0.78‡
0.29 0.70‡ 0.80‡ 0.66‡
0.65‡ 0.23 0.73‡ 0.53y
�0.11 0.68‡ 0.58‡ 0.67‡
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metabolism than AOB. Furthermore, the small cell size, small
genome, and oligotrophic lifestyle associated with AOA
(Hatzenpichler et al., 2008; Tourna et al., 2011; Hatzenpichler, 2012)
may contribute to their high abundance deeper in the soil profile
where energy sources are likely to be more limited. It has also been
shown that some archaeal groups lack an enzyme homologous to
hydroxylamine oxidoreductase (Schleper and Nicol, 2010) and
therefore may oxidize NH3 via a nitroxyl intermediate (Walker
et al., 2010) instead of hydroxylamine as seen in AOB. This alter-
nate nitroxyl pathway requires less oxygen than the hydroxylamine
pathway, which may allow AOA to occur and function in soil ho-
rizons and microsites where oxygen concentrations may be low
(Schleper and Nicol, 2010). Abundance of AOB amoA was signifi-
cantly positively correlated to SOC and TN with the highest abun-
dances being found in surface soils as well as control stands. It has
been shown that AOB are likely to be more abundant in soils with
high nutrient and substrate availability (Wess�en et al., 2010; Rasche
et al., 2011). Control and BO treatment stands possessed signifi-
cantly higher AOA and AOB amoA gene copy numbers thanWTþ FF
treatment stands which may be attributed to the harvest-induced
differences in physicochemical soil properties. It has been hy-
pothesized that soil pH drives niche differentiation of AOA and AOB
(Nicol et al., 2008; Stempfhuber et al., 2014) with archaea being
more competitive at low pH due to their high affinity for NH3
(Martens-Habbena et al., 2009; Verhamme et al., 2011) and AOB's
physiological inability to function at low pH (Frijlink et al., 1992;
Gubry-Rangin et al., 2011; Zhang et al., 2012; Hu et al., 2014).
Although it has been theorized that AOB are physiologically unable
to oxidize NH3 at pH < 5.5 (Hankinson and Schmidt, 1988; Jiang and
Bakken, 1999) their presence in acidic soils is generally observed
and leads to the hypothesis that theymay contribute to nitrification
in acidic soils, perhaps in less acidic microsites. AOA amoA abun-
dance increased with increasing soil acidity while AOB amoA
abundance was statistically unaffected; congruently, we observed
the least acidic conditions inWTþ FF treatment stands. From these
results, we would expect the ratio of AOA:AOB would be lowest for
the WT þ FF treatment due to the less acidic pH; however, it is
actually the highest. This suggests that harvest-induced reductions
in SOC and TN are more detrimental to AOB abundance than con-
current increases in soil pH are to AOA abundance.

4.3. Community structure, diversity, and richness of ammonia
oxidizers

Results show that AOB community structure is significantly
different among the three OMR treatments with clear separation in
the 0e10 cm increment. This indicates that the AOB community
was less resistant and/or resilient to perturbation and has not yet
recovered to pre-harvest conditions represented by the unhar-
vested control, most likely because of reduced substrate availabil-
ity. In contrast, AOA community structure was not statistically
affected by harvest treatment, indicating community resistance
and/or resilience to increasing harvest intensity. The lack of treat-
ment differences for AOA is most likely related to their physiolog-
ical ability to maintain functionality in nutrient-depleted
conditions. This is similar to Pereira e Silva et al. (2012) who
showed that ammonia oxidizer community structure can change in
response to seasonal differences in substrate availability with AOB
variability being higher than AOA. Regardless of harvest treatment,
we observed distinct community composition clustering for both
AOA and AOB in response to soil depth. This is similar to what was
observed by Gan et al., 2015, who demonstrated that soil depth has
more influence on AOA and AOB community structure than forest
type.

We also observed that the diversity and richness of AOA OTUs
were significantly higher than AOB regardless of OMR or soil depth
which is similar to previous studies (Pester et al., 2012; Stahl and de
la Torre, 2012). Although AOA richness was unaffected by depth, we
did observe that OTU numbers were lowest in controls suggesting
that disturbance promotes the cohabitation of AOA lineages with
differing ecological strategies. Similar to what was observed with
AOB amoA quantification, AOB OTU richness decreased with depth.
Congruently, AOB OTU richness was positively correlated to calcu-
lated levels of NH3. This implies that only select AOB lineages are
able to function in soil horizons with lower resource levels. In
contrast, AOA diversity increased with depth indicating that there
is more AOA intraspecific competitionwhen resources are low. This
hypothesis is bolstered by the observation that AOA diversity was
negatively correlated to SOC, TN, and NO2

� þ NO3
�.

4.4. Total, AOA, and AOB nitrification potential

Potential total nitrification rates measured across all harvest
treatments and soil depths fall within the range of 0.57e1.35 mg
NO2

� þ NO3
� kg�1 soil day�1 (for soils amended with 3.5 kg NH4

þ

kg�1 soil) and 4.01e8.72 mg NO2
� þ NO3

� kg�1 soil day�1 (for soils
amended with 100 kg NH4

þ kg�1 soil). These values are consistent
those observed previously in forest soils (Vitousek et al., 1982;
Wertz et al., 2012; Lu et al., 2015). We found that both AOA and
AOB activity was stimulated by the addition of anhydrous NH3,
indicating that both populations were N-limited in these soils.
Although many studies dealing with acidic soils have reported the
presence of AOB (Nicol et al., 2008; Gubry-Rangin et al., 2010;
Stopni�sek et al., 2010; Yao et al., 2011; Zhang et al., 2011; Lu et al.,
2015), it has not been entirely clear if these populations are actively
oxidizing NH3. Similar to Lu et al. (2015), we observed that NH4

þ-
stimulated activity was octyne sensitive in all treatments and at all
depths indicating that AOB are potentially active in this system.
Furthermore, regardless of harvest treatment, AOB contributed
roughly 47% to total nitrification at 0e10 cmwith 3.5 mg NH4

þ kg�1;
however, this percentage increased to 51% contribution when
100 mg NH4

þ kg�1 was applied. This indicates that AOB become
more competitive when higher substrate concentration becomes
available which is consistent with Giguere et al. (2015). AOB
contribution decreased linearly to 23e25% at 60e100 cm which is
similar to the trend that was observed with amoA gene copy
number. Considering the acidity of this system it was surprising
that AOB were not only functionally active but also contributed
substantially to total nitrification. It is not entirely clear why the
AOB contributed so greatly to nitrification in these soils; however,
AOB might persist and be locally active in acidic forest soils via
protective (less-acidic) aggregates and microsites as was main-
tained in this whole-soil assay. Slurry assays in which soil structure
is lost have reported lower AOB contributions to nitrification than
whole-soil assays (Lu et al., 2015). It is also possible that AOA
phylotypes exist in the acidic forest soils that are more sensitive to
inhibition by octyne, which could potentially alter the relative
contributions of AOA and AOB to total nitrification (Lu et al., 2015).

Increasing OMR intensity did not result in significant potential
total nitrification difference for the 3.5 mg NH4

þ kg�1 normalization
level; however differences were observed with higher levels of
NH4

þ. This indicates that at lower NH4
þ conditions (similar to what is

observed in the environment), increasing OMR intensity may not
lead to long-term changes in total rates of nitrification which is
somewhat surprising considering that we observed significant
treatment differences in both AOA and AOB amoA quantification;
however, amoA quantification is only an estimate of potential ac-
tivity. Coupling this nitrification assay to gene expression analysis
may yield more accurate estimates of actual activity; however this
was not done in this study because of the difficulty in extracting
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quality mRNA from these acidic, humic soils. The observed treat-
ment differences in total, octyne-resistant (AOA), and octyne-
sensitive (AOB) nitrification at high levels of NH4

þ may be an indi-
cation that high levels of AMO enzyme synthesis (mirroring amoA
quantification levels) are activated onlywhen substrate levels reach
a certain threshold which exceeds environmental levels in this
system. Contrary to total nitrification potential and AOB (octyne-
sensitive) nitrification potential, AOA (octyne-resistant) nitrifica-
tion was significantly reduced by increasing OMR intensity at
3.5 mg NH4

þ kg�1. Considering that AOA are dominant (especially at
depth) in this system, increasing OMR intensity may be a solution
to reducing total nitrification rates, and the subsequent loss of ni-
trogen from the soil system; however, the associated loss of total
nitrogen with increasing OMR intensity most likely outweighs any
positive contribution of reduced nitrification.
5. Conclusions

Our findings indicate that differing intensities of OMR associ-
ated with timber harvest can impart long-term reductions in con-
centrations of SOC, TN, NH4

þ, and NO2
� þ NO3

�, and alter the
abundance and community structure of AOA and AOB throughout
the soil profile. The abundance of AOB amoA gene copy number was
significantly positively correlated to SOC and TN, while AOA amoA
was negatively correlated with soil pH indicating that the abun-
dances of these two functional taxonomic groups are influenced by
soil physicochemical properties which may be modified by
different OMR treatments. Soil depth also strongly shapes AOA and
AOB abundances and community composition, with an increasing
ratio of AOA:AOB with increasing depth. Furthermore, total-,
octyne-resistant (AOA), and octyne-sensitive (AOB) nitrification
potential were all affected by increasing OMR intensity; however,
only octyne-resistant (AOA) nitrification potential was significantly
affected at low levels of NH4

þ indicating that differing levels of OMR
may not lead to significant differences in total rates of nitrification.
Understanding the influence of differing intensities of OMR on key
nitrogen cycle processes and the microbial communities that
regulate those processes can yield important insights regarding the
mechanism by which forest disturbance can modify biogeochem-
ical cycling and influence forest productivity.
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