Epidemiology of Pregnancy Losses and Practical Strategies for Prevention

Klibs N.A. Galvão and Jose E. P. Santos College of Veterinary Medicine University of Florida galvaok@ufl.edu

Outline

- Importance of pregnancy losses
- Outline the critical period for pregnancy losses
- Main risk factors
 - Postpartum diseases
 - Heat stress
 - Anovulation/Low P4 during ovulatory follicle growth
 - Prolonged periods of ovulatory follicle dominance
 - Toxins (gossypol, mycotoxins)
 - Infectious diseases (Neospora, Lepto, BVD, IBR)
- Conclusions

Importance of Pregnancy and Pregnancy loss

- Each new pregnancy costs ~ \$278 (\$-14 to \$551); cow 500 DIM 90 lbs
- Each pregnancy lost costs ~ \$555 (\$-3 to \$1,373)

Reproductive Failure

- Fertilization failure
- Pregnancy loss

Fertilization and Viable Embryos

Fertilization rate and embryo quality in non-superovulated lactating and nonlactating dairy cattle

Dairy cattle	Method of	Number of	Days	Fertilization (%)	Viable embryo, ^a		Reference
	collection	structures	after AI		Fertilized (%)	Total (%)	
Lactating							
Cows	Uterine flush	38	6	55.3	33.3	18.4	Sartori et al. (2002)
Cows	Uterine flush	41	6	87.8	52.8	46.4	Sartori et al. (2002)
Cows	Uterine flush	45	5	73.3	78.8	57.8	Cerri et al. (in press)
Cows	Uterine flush	41	5	87.2	85.3	74.4	Cerri et al. (in press)
Overall	Uterine flush	165	5–6	76.2 (55.3–87.8)	65.6 (33.3-85.3)	50.0 (18.4-74.4)	
Nonlactating							
Cows	Uterine flush	38	6	89.5	82.3	73.7	Sartori et al. (2002)
Cows	Uterine flush	39	6-7	67.0	93.0	62.3	Dalton et al. (2001)
Cows	Uterine flush	39	6-7	79.0	90.0	71.1	Dalton et al. (2001)
Cows	Uterine flush	37	6-7	98.0	89.0	87.2	Dalton et al. (2001)
Cows	Uterine flush	39	6-7	66.0	92.0	60.7	Dalton et al. (2001)
Cows	Uterine flush	39	6-7	74.0	90.0	66.6	Dalton et al. (2001)
Cows	Uterine flush	39	6-7	82.0	66.0	54.1	Dalton et al. (2001)
Cows	Uterine flush	26	6	81.0	N/A ^b	N/A	DeJarnette et al. (1992)
Cows	Uterine flush	24	6	83.0	N/A	N/A	DeJamette et al. (1992)
Cows	Uterine flush	19	6	68.0	57.1	36.3	DeJarnette et al. (1992)
Cows	Uterine flush	19	6	58.0			DeJamette et al. (1992)
Cows	Uterine flush	20	6	70.0	90.3	65.1	DeJamette et al. (1992)
Cows	Uterine flush	23	6	74.0			DeJarnette et al. (1992)
Cows	Uterine flush	21	6	90.0	94.7	85.2	DeJarnette et al. (1992)
Cows	Uterine flush	22	6	77.0	76.5	58.9	DeJarnette et al. (1992)
Overal1	Uterine flush	444	6–7	78.1 (58.0–98.0)	74.1 (57.1–94.7)	57.9 (36.3-87.2)	
Heifers	Uterine flush	32	6	100.0	71.9	71.9	Sartori et al. (2002)

Late Embryonic Loss

Late embryonic mortality in lactating dairy cows

No. of	Days of	gestation at	diagnosis			
pregnancies	First	Second	Interval (days)	Pregnancy loss (%)	Pregnancy loss (% per day)	Reference
256	28	38-58	~20	28.0	1.40	Cartmill et al. (2001a)
110	27-30	40-50	~16	42.7	2.67	Cartmill et al. (2001b)
261	30	44	14	12.5	0.89	Cerri et al. (2003)
195	28	42	14	17.9	1.28	Chebel et al. (2003a)
74	31	45	14	10.8	0.77	Chebel et al. (2003b)
1465	31	45	14	12.5	0.89	Chebel et al. (in press)
251	27	41	14	17.5	1.25	Galvão et al. (in press)
167	28	39	11	11.4	1.04	Juchem et al. (2002)
139	27	45	18	20.7	1.15	Moreira et al. (2001)
172	28	45	17	9.3	0.55	Santos et al. (2001)
372	31	45	14	11.4	0.82	Santos et al. (2004a)
215	27	41	14	9.9	0.71	Santos et al. (2004c)
705	28	42	14	3.2	0.23	Silke et al. (2002)
488	28	42	14	10.5	0.75	Vasconcelos et al. (1997)
Overall: 4870	27-31	38-50	~15	12.8	0.85	
				(3.2-42.7)	(0.23-2.67)	

Late Embryonic and Fetal Loss

Late embryonic and fetal losses in lactating dairy cows and primigravid dairy heifers

Number of	Days of g	gestation at dia	gnosis		
pregnancies	First	Second	Interval (days)	Pregnancy loss (%)	Reference
Lactating cows					
1547	35-48	180	~139	9.9	Ettema and Santos (in press
89	28	56	28	13.5	Fricke et al. (1998)
86	28	64	36	12.8	Gümen et al. (2003)
601	38-44	90-96	~52	10.7	López-Gatius et al. (2002)
3162	41	120-150	~84	9.6	Labèrnia et al. (1996)
285	25-35	Term	~250	22.0	Pursley et al. (1998)
156	45	90	45	8.3	Santos et al. (2001)
57	25-32	60-66	~34	18.6	Sartori et al. (2003)
64	26-58	Term	~238	8.6	Szenci et al. (1998)
148	28	98	70	18.9	Vasconcelos et al. (1999)
Overall: 6195	25-70	56-term	28-250	10.7 (8.3-24.0)	
Primigravid					
72	30	Term	~250	4.2	Dunne et al. (2000)
1933	35-48	Term	\sim 238	1.5	Ettema and Santos (in press
1050	41	120-150	84	2.8	Labèrnia et al. (1996)
147	30	75	45	10.2	Rivera et al. (in press)
131	28	84	56	6.05	Silke et al. (2002)
Overall: 3333	28-58	75-term	45-250	2.52 (1.5-10.2)	

Summary

Lactating dairy cows

- Fertilization rate = ~ 76% (55% heat stress, ~ 80% cool weather)
- Viable embryos = ~50% of oocytes (18% heat stress, ~60% cool weather)
- Late embryonic loss = ~13% (43% heat stress)
- Fetal losses = ~ 10%
- Greatest risk in the first 42 d of gestation (0.9%/d)
 - ☐ With early pregnancy diagnosis (~30 d), confirmation is critical

Heifers

- Fertilization rate ≥ 90%
- Late embryonic and fetal mortality < 5.0%

Incidence of infectious diseases in the first 60 d postpartum

5,719 cows from 7 dairies in the US

(Santos et al., 2010. Soc Reprod Fertil Suppl.)

Disease and Pregnancy 35d

Health status	CR, %	Adjusted OR (95% CI)	Р
Healthy	51.4	1.00	_
1 case of disease	43.3	0.79 (0.69 - 0.91)	0.001
> 1 case of disease	34.7	0.57 (0.48 - 0.69)	< 0.001
Type of health problem			
Calving problem	40.3	0.75 (0.63 - 0.88)	< 0.001
Metritis	37.8	0.66 (0.56 - 0.78)	< 0.001
Clinical endometritis	38.7	0.62 (0.52 - 0.74)	< 0.001
Fever postpartum	39.8	0.60 (0.48 - 0.65)	< 0.001
Mastitis	39.4	0.84 (0.64 - 1.10)	0.20
Clinical ketosis	28.8	0.50 (0.36 - 0.68)	< 0.001
Lameness	33.3	0.57 (0.41 - 0.78)	< 0.001
Pneumonia	32.4	0.63 (0.32 - 1.27)	0.20
Digestive problem	36.7	0.78 (0.46 - 1.34)	0.38

Disease and Pregnancy Loss 35-70d

Health status	Loss, %	Adjusted OR (95% CI)	P
Healthy	8.9	1.00	
1 case of disease	13.9	1.73 (1.25 - 2.39)	< 0.001
> 1 case of disease	15.8	2.08 (1.36 - 3.17)	< 0.001
Type of health problem			
Calving problem	15.9	1.67 (1.16 - 2.40)	< 0.01
Metritis	11.3	1.01 (0.71 - 1.60)	0.76
Clinical endometritis	15.1	1.55 (1.04 - 2.32)	0.03
Fever postpartum	18.0	2.00 (1.24 - 3.14)	< 0.01
Mastitis	19.8	2.62 (1.48 - 4.64)	< 0.001
Clinical ketosis	14.6	1.64 (0.75 - 3.59)	0.22
Lameness	26.4	2.67 (1.38 - 5.12)	< 0.01
Pneumonia	16.7	1.87 (0.40 - 8.69)	0.42
Digestive problem	15.8	1.81 (0.52 - 6.32)	0.35

Incidence of infectious diseases in the first 60 d postpartum

Disease and Pregnancy 30d

Category	Pregnant, %	Adjusted OR (95% CI)	P	
Healthy	70.9	1.00		
1 case of disease	61.4	0.67 (0.47 - 0.94)	0.02	
> 1 case of disease	48.5	0.42 (0.29 - 0.60)	< 0.01	
Type of health problem				
Calving problem	44.8	0.51 (0.29 - 0.91)	0.02	
Metritis	38.6	0.36 (0.19 - 0.67)	< 0.01	
Clinical endometritis	54.1	0.72 (0.48 - 1.07)	0.10	
NEFA > 0.7 mEq/L	45.6	0.47 (0.32 - 0.70)	< 0.01	
Subclinical ketosis	56.8	0.70 (0.51 - 0.96)	0.03	
Mastitis	54.4	0.66 (0.45 - 0.98)	0.04	
Lameness	45.8	0.52 (0.23 - 1.17)	0.11	
Pneumonia	45.0	0.59 (0.24 - 1.45)	0.25	
Digestive problem	32.0	0.30 (0.13 - 0.70)	<0.01	

Disease and Pregnancy Loss 30-65d

Health status	Loss, %	Adjusted OR (95% CI)	Р
Healthy	10.4	1.00	
1 case of disease	9.0	0.91 (0.46 - 1.82)	0.80
> 1 case of disease	15.0	1.71 (0.86 - 3.39)	0.13
Type of health problem			
Calving problem	26.9	3.89 (1.53 - 9.93)	< 0.01
Metritis	31.2	4.06 (1.34 - 12.29)	0.01
Clinical endometritis	20.6	2.55 (1.28 - 5.07)	< 0.01
NEFA > 0.7 mEq/L	6.6	0.67 (0.23 - 1.99)	0.48
Subclinical ketosis	8.3	0.92 (0.44 - 1.92)	0.82
Mastitis	12.3	1.02 (0.45 - 2.31)	0.96
Lameness	0.0		
Pneumonia	22.2	2.93 (0.58 - 14.90)	0.20
Digestive problem	12.5	1.28 (0.15 - 10.72)	0.82

Endometritis and Pregnancy Loss

Time to Pregnancy

Effect of Cyclicity Status Prior to Insemination on Late Embryonic Losses in Dairy Cows, % (No. Pregnancies)

	Sta	tus	
Reference	Cyclic	Anovular	<i>P</i> =
Bisinotto et al. (2010)	13.2 (1,780)	15.0 (374)	0.17
Cartmill et al. (2001)	24.0 (223)	33.0 (33)	NS
Cartmill et al. (2001)	36.8 (95)	80.0 (15)	0.05
Cerri <i>et al.</i> (2003)	10.8 (204)	14.6 (48)	NS
Chebel et al. (2010)	8.7 (207)	13.3 (60)	0.30
Gumen <i>et al.</i> (2003)	12.3 (81)	20.0 (5)	NS
McDougall <i>et al.</i> (2005)	5.0 (1,470)	9.0 (534)	0.007
Pursley <i>et al.</i> (2001)	15.1 (186)	35.0 (46)	
Santos <i>et al.</i> (2004)	10.4 (270)	17.5 (40)	NS
Santos <i>et al.</i> (2004)	10.2 (186)	7.7 (26)	NS
Stevenson et al. (2006)	16.0 (208)	31.0 (81)	< 0.05

Anovular vs. Cyclic: Relative Risk = 1.35 (95% CI = 1.16-1.58)

Proportion of Cows Classified as Cyclic (o) and Anestrus (▲) Remaining Pregnant

N = 2,004 cows 10 dairy herds

_McDougall et al. N. Zeal. Vet. J. (2005)

What Factors Affect Cyclicity?

Table 3. Final multivariable logistic regression model (model 1) for factors associated with cyclicity by 21 ± 3 DIM including all cows (n = 768)

Variable	Level	Cows, no.	$\mathrm{Cyc}21,^1\%$	Odds ratio	95% CI	P-value
Calving season ²	SumFall	598	45.7	2.4	1.6-3.6	< 0.001
	WinSpri	170	27.7	Ref. ³	Ref.	
Parity	Multiparous	445	45.4	1.5	1.1 - 2.1	0.01
	Primiparous	323	36.5	Ref.	Ref.	
Metabolic problem ⁴	No	599	43.7	1.7	1.2 - 2.6	0.005
	Yes	169	34.3	Ref.	Ref.	-
Digestive problem ⁵	No	696	42.8	1.8	1.0 - 3.1	0.05
-	Yes	72	30.6	Ref.	Ref.	

Table 4. Final multivariable logistic regression model (model 2) for factors associated with cyclicity by 21 ± 3 DIM including cows that had BW measured (only dairy 1; n = 458)

Variable	Level	Cows, no.	$\mathrm{Cyc}21,^1\%$	Odds ratio	95% CI	P-value
Calving season ²	SumFall WinSpri	300 158	50.0 28.5	$\frac{2.7}{\mathrm{Ref.}^3}$	1.7–4.1 Ref.	<0.001
$Metritis^4$	No	344	46.2	1.7	1.1-2.8	0.02
	Yes	114	31.6	Ref.	Ref.	
Digestive problem ⁵	No	387	45.0	1.9	1.1 - 3.3	0.03
9	Yes	71	29.6	Ref.	Ref.	
BWL^6	$\leq 28 \text{ kg}$	157	49.0	1.5	1.0 - 2.3	0.06
300 C 100 C	>28 kg	301	39.2	Ref.	Ref.	2

Combined effect of Anovulation and CTE

Summary

There is no good disease!!!

What leads to disease?

Disease is multifactorial

Infection and the Immune System

Kuby Immunology, 6th ed.

Metabolic State Peripartum

NEB in Early Lactation

DMI and Uterine Disease

Hammon et al., 2006; Vet. Imm. Immunop.

NEFA and Immune Function

Immunosuppression

120

96 72 48 24 4 8 (a) Weeks Relative to Calving

_ Healthy

---- Metritis

Kehrli et al., 1989; JDS

Hammon et al., 2006; Vet Im Im

NEFA & BHBA & Immune Function

BHBA and Immune Function

Grinberg et al., 2008; Infec. Immun.

Papayannopoulos et al. 2010. J. Cell Biol.

DMI and Uterine Disease

 Each kg decrease in DMI the last week prepartum increased the odds of severe metritis by 187% (OR = 2.87; P = 0.02)

 Each 10 min decrease in feeding time during the last week prepartum increased the odds of severe metritis by 72% (OR = 1.72; P = 0.02)

DMI Pre- and Postpartum

- Disease = RP, metritis, mastitis, ketosis or DA (n = 167; 57%)
- Each kg decrease in DMI the last week prepartum increased the odds of postpartum disease by 18% (OR = 1.18; P < 0.01)

Calcium during transition

Figure 1. Plasma calcium concentrations (mean \pm SEM) around the time of parturition in milk fever (\bigcirc ; n = 8) and nonmilk fever (\bigcirc ; n = 19) cows; d 0 = day of parturition.

Calcium Activates Leukocytes

SCHCa and Immune Function

Calcium and Metritis

Metritis and Immune Function

Incidence of Metritis according to Risk Group and Calcium Status

	Risk group1					
	Le	OW	Н	igh		
Serum Ca,2 mg/dL	> 8.59	≤ 8.59	> 8.59	≤ 8.59		
Metritis,3,*,¶ % (n/n)	14.3 (4/28)	40.7 (11/27)	20.0 (2/10)	77.8 (35/45)		
Puerperal metritis,4,* % (n/n)	0.0 (0/28)	29.6 (8/27)	10.0 (1/10)	53.5 (24/45)		

^{*} Effect of subclinical hypocalcemia (P < 0.05).

[¶] Effect of metritis risk (P < 0.05).

¹ Risk group: Low= normal calving; High= cows diagnosed with dystocia, twin, stillbirth, or retained fetal membranes.

² Serum Ca concentration in the first 3 d postpartum.

³ Cows with watery fetid vaginal discharge within the first 12 DIM regardless of rectal temperature.

⁴ Cows with watery fetid vaginal discharge within the first 12 DIM concurrent with rectal temperature ≥ 39.5 °C.

Probability of Metritis Relative to the Change in Serum Calcium

Effect of change in serum calcium: P < 0.05

AOR = 0.38 (95% CI = 0.16 to 0.90); 62% decrease in incidence for each 1 mg/dL increase in Ca

Population Attributable Risk due to Subclinical Hypocalcemia

Metritis

Puerperal Metritis

Road to disaster

- Characterized by:
 - High stress/calving/heat
 - Decrease in DMI
 - Low glucose
 - High fat mobilization
 - Sub. ketosis (~40%)
 - Sub. hypocalcemia (25-45%)
 - Immunosuppression

Summary

- Immunosuppression peripartum is a major contributor to high incidence of disease.
- Strategies to maintain DMI and Ca status should help reduce the incidence of disease
 - Focus on cow comfort and access to feedbunk pre- and postpartum
 - Well managed acidogenic diets reduce the incidence of clinical hypocalcemia < 5% but SCH still a challenge.

Cow Comfort

Can we do anything else to help?

Flunixin Meglumine to Prevent Disease

FM treatment for 1-3 days post-calving:

- Increased risk of retained placenta 2.5X (Waelchli et al., 1999; Vet. Rec.; Duffield, et al., 2009; JDS Abstr.)
- Increased risk of metritis 1.5X (Duffield, et al., 2009; JDS Abstr.)
- Increased body temperature (Shwartz et al., 2009; JDS)
- Decreased DMI, milk yield and EB (Shwartz et al., 2009; JDS) in the first week

PPG for cows with BHB ≥ 1.2 mmol/L

Table 1. Cox proportional models showing hazard ratios (HR) for 741 Holstein cows with at least one positive test for subclinical ketosis from 3 to 16 DIM randomly assigned to propylene glycol treatment (n = 372) or control (n = 369)

Event ¹	Estimate	SE^2	P-value ³	$_{ m HR}$	95% CI ⁴
BHBA <1.2 mM/L	0.41	0.091	< 0.001	1.50	1.26 to 1.79
BHBA $\geq 3.0 \text{ mM/L}$	0.62	0.24	0.009	0.54	0.34 to 0.86

Table 4. Estimates for 3 final Poisson regression models showing risk ratios (RR) for 741 Holstein cows with at least 1 positive test for subclinical ketosis from 3 to 16 DIM randomly assigned to propylene glycol treatment (n = 372) or control $(n = 369)^1$

Model	Estimate	SE^2	P -value 3	RR	95% CI ⁴
DA CULL	$0.47 \\ 0.72$	0.11 0.29	<0.0001 0.01	1.6 2.1	1.3 to 2.0 1.2 to 3.6
PREG	0.27	0.09	0.002	1.3	1.1 to 1.5

¹The 3 outcomes modeled were 1) development of a displaced abomasum (DA) within 30 DIM, 2) removal from herd (CULL) within 30 DIM, and 3) conception to first service (PREG).

Calcium bolus - CaCl2 + CaSO4

Effect of oral calcium bolus supplementation on early-lactation health and milk yield in commercial dairy herds

G. R. Oetzel*¹ and B. E. Miller†
*School of Veterinary Medicine, University of Wisconsin, Madison 53706
†Boehringer Ingelheim Vetmedica Inc., St. Joseph, MO 64506

- Ca bolus administered at calving and 8-35h later.
- No effect in Ca concentration 8-35 h after TRT.
- No effect in disease incidence: metritis, mastitis, pneumonia, death or culling.
- No overall effect on milk yield or reproduction.
- Increased in the first postpartum milk test in cows with previous 305ME above average (≥ 105) and lame cows.

Calcium Bolus

BCS Body Condition Score

I-stat = 30-60 min after treatment. Subset of 60 cows,30 primiparous and 30 multiparous - Ca²+, pH, Na, K, and HCO₃-BS = Blood sample in a subset of 300 cows, used for analyses of serum total NEFA, BHBA, Glucose, and total Ca. VDS =Vaginal discharge scoring (metricheck) for diagnosis of metritis, clinical endometritis. Metritis: watery fetid discharge, regardless of fever. Puerperal metritis: metritis with fever (≥ 39.5°C). Clinical endometritis: VDS ≥3.

Calcium Bolus

	High Ris	k of Me	etritris	Low Ris			
	Control	CaS1	CaS4	Control	CaS1	CaS4	SEM
Ca ²⁺ , mM ^{1,*} ¶	1.08	1.15	1.21	1.09	1.17	1.20	0.02
Temperature, °C	38.87	38.90	38.90	38.76	38.77	38.74	0.03
Milk, Kg/d, first 7DIM	29.4	29.4	27.7	32.9	30.7	32.1	1.10
Glucose, mg/dL ²	53.8	53.7	53.3	57.3	53.9	55.7	0.02
BHBA, mM ²	0.90	0.90	0.85	0.76	88.0	0.83	0.04
NEFA, mM ²	0.536	0.597	0.588	0.545	0.601	0.581	0.03

Calcium Bolus

	High Risk of Metritris			Lov	Low Risk of Metritris			
	Control	CaS1	CaS4	Control	CaS1	CaS4		
Metritis 1,*	55.4 (41/74)	63.5 (47/74)	56.2 (41/73)	9.5 (7/74)	20.3 (15/74)	20.3 (15/74)		
PuMet ²	23.0 (17/74)	25.7 (19/74)	25.7 (19/74)	2.7 (2/74)	5.4 (4/74)	9.5 (7/74)		
Endometritis ³	38.2 (26/68)	33.8 (24/71)	31.4 (22/70)	22.2 (16/72)	21.9 (16/73)	18.1 (13/72)		
Ketosis ⁴	8.1 (6/74)	5.5 (4/73)	2.8 (2/71)	4.2 (3/72)	8.2 (6/73)	8.1 (6/74)		
SCKet ⁵	43.2 (32/74)	43.8 (32/73)	33.8 (24/71)	23.0 (17/74)	32.4 (24/74)	28.4 (21/74)		

Cure rate using Dextrose or Excede

Table 2. Prevalence (%) of clinical endometritis (CE) at exam 2 (40 ± 3 DIM) in lactating Holstein cows using vaginoscopy scoring technique and measurement of cervical diameter by ultrasonography

Parameter	CON (n = 83)	DEX (n = 79)	$ \begin{array}{c} \text{CCFA} \\ (n = 75) \end{array} $	P-value
Clinical uterine discharge				
0 (clear mucus)	$24.53^{\rm b}$	$44.68^{\rm a}$	$41.30^{\rm a}$	0.02
1 (mucus with flecks of pus)	33.96	27.66	21.74	
2 (mucopurulent)	32.08	21.28	28.26	
3 (brown-red foul)	9.43	6.38	8.70	
Cervical diameter (cm)				
<4	62.50	66.02	65.79	
4.0-5.0	31.25	29.10	23.68	
\geq 5.1	6.25	4.88	10.53	

 $^{^{\}rm a,b}$ Values with different superscript letters within a row differ significantly at P < 0.05.

Pregnancy per Al for First Services

Table 6. Proportions (%) of pregnancies per AI (P/AI) in lactating Holstein cows with clinical endometritis (CE) following an intrauterine dextrose infusion (DEX), ceftiofur crystalline free acid (CCFA), or untreated animal (CON)¹

		Cows with CE			
Variable	$\begin{array}{c} {\rm CON} \\ ({\rm n}=83) \end{array}$	$ DEX \\ (n = 79) $	$ \begin{array}{l} \text{CCFA} \\ (n = 75) \end{array} $	Cows without CE $(n = 523)$	P-value
First-service P/AI for cows with CE only ² (%) First-service P/AI for all cows ³ (%) Pregnancy loss ⁴ (%)	21.1 ± 4 20.1 ± 4^{b} 11.6 ± 5^{a}	29.8 ± 4 30.5 ± 5^{ab} 9.1 ± 4^{ab}	19.7 ± 4 19.4 ± 4^{b} 13 ± 5^{a}	$39.1 \pm 2^{a} 5.8 \pm 2^{b}$	0.1 0.0001 0.03

 $^{^{\}mathrm{a,b}}$ Values with different superscript letters within a row differ significantly at P < 0.05.

Summary

- Use NSAIDs judiciously; no blanket TRT
- 300 ml of PPG to cows with BHB ≥ 1.2 mmol/L helped treat SCK and prevent clinical ketosis and the downstream negative effects on fertility
- Supplementation with Ca bolus gave controversial results. Maybe there is a benefit in milk yield for a group of cows but health is either unchanged or negatively affected.
- Dextrose is a promising TRT for CE

Conclusion

- Initiation of lactation leads to decreases in concentrations of plasma glucose, glycogen and calcium, and leads to increases in NEFA and BHBA.
- NEFA, BHBA, and low calcium directly affect immune function.
- Immunosuppression during periods of NEB predisposes cows to postpartum diseases.
- Postpartum diseases affect pregnancy and PL.
- There is no magic bullet.

Questions???

